Advertisement

Journal of Paleolimnology

, Volume 23, Issue 1, pp 91–114 | Cite as

The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene - a synthesis

  • Hilary H. Birks
  • R.W. Battarbee
  • H.J.B. Birks
Article

Abstract

This paper synthesises the palaeoecological reconstructions, including palaeoclimatic inferences, based on the available fossil record of plants (pollen, macrofossils, mosses, diatoms) and animals (chironomids, Cladocera, Coleoptera, Trichoptera, oribatid mites) in the late-glacial and early-Holocene sediments of Kråkenes Lake, western Norway, with special emphasis on changes in the aquatic ecosystem. New percentage and influx pollen diagrams for selected taxa provide insights into the terrestrial setting. The information from all the proxies is collated in a stratigraphical chart, and the inferred changes in the lake and its catchment are discussed. The individual fossil sequences are summarised by detrended correspondence analysis (DCA), and sample scores on the first DCA axes are plotted against an estimated calendar-year timescale for comparison of the timing and magnitude of changes in assemblage composition. The DCA plots show that the large late-glacial biotic changes were synchronous, and were driven by the overriding forcing factor of temperature. During the early Holocene, however, the changes in different groups were more gradual and were independent of each other, showing that other factors were important and interactive, such as the inwash of dissolved and particulate material from the catchment, the base and nutrient status of the lake-water, and the internal processes of ecosystem succession and sediment accumulation. This multi-disciplinary study, with proxies for changes in the lake and in the catchment, highlights the dependence of lake biota and processes not only on regional climatic changes but also on changes in the lake catchment and on internal processes within the lake. Rates of change for each group are also estimated and compared. The reaction times to the sharp temperature changes at the start and end of the Younger Dryas were very rapid and occurred within a decade of the temperature change. Aquatic organisms tracked the temperature and environmental changes very closely, and are probably the best recorders of late-glacial climatic change in the fossil record.

aquatic ecosystem reconstruction Kråkenes Lake late glacial early Holocene detrended correspondence analysis rates of change multi-disciplinary study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B., D. A. Meese, C. A. Shuman, A. J. Gow, K. C. Taylor, P. M. Grootes, J. W. C. White, M. Ram, E. D. Waddington, P. A. Mayewski & G. A. Zelinsky, 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527–529.Google Scholar
  2. Beerling, D. J., H. H. Birks & F. I. Woodward, 1995. Rapid lateglacial atmospheric 14C changes reconstructed from the stomatal density record of fossil leaves. J. Quat. Sci. 10: 370–384.Google Scholar
  3. Bennett, K. D. & R. W. Humphry, 1995. Analysis of late-glacial and Holocene rates of vegetational change at two sites in the British Isles. Rev. Palaeobot. Palynol. 85: 263–287.Google Scholar
  4. Birks, H. H., 1994. Late-glacial vegetational ecotones and climatic patterns in western Norway. Veg. Hist. Archaeobot. 3: 107–119.Google Scholar
  5. Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early Holocene. J. Paleolim. 23: 7–19.Google Scholar
  6. Birks, H. H. + 23 others, 1996a. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286.Google Scholar
  7. Birks, H. H., S. Gulliksen, H. Haflidason, J. Mangerud & G. Possnert, 1996b. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quat. Res. 45: 119–127.Google Scholar
  8. Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5.Google Scholar
  9. Birks, H. J. B., 1970. Inwashed pollen spectra at Loch Fada, Isle of Skye. New Phytol. 69: 807–820.Google Scholar
  10. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Quat. Res. Assoc. Cambridge: 161–254.Google Scholar
  11. Birks, H. J. B., 1998. Numerical tools in palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332.Google Scholar
  12. Birks, H. J. B. & H. H. Birks, 1980. Quaternary Palaeoecology. Edward Arnold.Google Scholar
  13. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B, 327: 263–278.Google Scholar
  14. Björck, S., M. Rundgren, O. Ingolfsson & S. Funder, 1997. The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. J. Quat. Sci. 12: 455–465.Google Scholar
  15. Bradshaw E. G., V. J. Jones, H. J. B. Birks & H. H. Birks, 2000. Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. J. Paleolim. 23: 21–34.Google Scholar
  16. Brooks, S. J., 1997. The response of Chironomidae (Insecta: Diptera) assemblages to late-glacial climatic change in Kråkenes Lake, western Norway. Quat. Proc. 5: 49–58.Google Scholar
  17. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.Google Scholar
  18. Dahl, E., 1998. The Phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, Cambridge. 297 pp.Google Scholar
  19. Duigan C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76.Google Scholar
  20. Grimm, E. C. & G. L. Jacobson, 1992. Fossil-pollen evidence for abrupt climate changes during the past 18000 yrs in eastern North America. Climate Dynamics 6: 179–184.Google Scholar
  21. Grönvold, K., N. Öscarsson, S. J. Johnsen, H. B. Clausen, C. U. Hammer, G. Bond & E. Bard, 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth and Planetary Science Letters 135: 149–155.Google Scholar
  22. Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas — Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.Google Scholar
  23. Hauge, F., 1995. Paleomagnetisk korrelasjon av Yngre Dryas lakustrine sedimenter fra Møre, Nordwest-landet. Cand. Scient. Thesis, University of Bergen.Google Scholar
  24. Hedenäs, L., 1997. Sjömossor i Sverige. Svensk Bot. Tidskr. 90: 277–296.Google Scholar
  25. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  26. Jacobson, G. L. & E. C. Grimm, 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 67: 958–966.Google Scholar
  27. Jolliffe, I. T., 1986. Principal component analysis. Springer-Verlag, New York. 271 pp.Google Scholar
  28. Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.Google Scholar
  29. Kitagawa, H. & J. van der Plicht, 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production. Science 279: 1187–1190.Google Scholar
  30. Kitchell, J. A., G. Estabrook & N. MacLeod, 1987. Testing for equality of rates of evolution. Paleobiology 13: 272–285.Google Scholar
  31. Laird, K. R., S. C. Fritz, B. F. Cumming & E. C. Grimm, 1998. Early-Holocene limnological and climatic variability in the Northern Great Plains. The Holocene 8: 273–285.Google Scholar
  32. Larsen, E., F. Eide, O. Longva & J. Mangerud, 1984. Allerød-Younger Dryas climatic inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arct. Alp. Res. 16: 137–160.Google Scholar
  33. Lemdahl, G., 2000. Late-glacial and early-Holocene Coleoptera assemblages as indicators of local environment and climate at Kråkenes Lake, western Norway. J. Paleolim. 23: 57–66.Google Scholar
  34. Lotter, A. F., B. Ammann & M. Sturm, 1992. Rates of change and chronological problems during the late-glacial period. Climate Dynamics 6: 233–239.Google Scholar
  35. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  36. Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring summer lake-water and air temperatures from chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.Google Scholar
  37. Ruddiman, W. F. & A. McIntyre, 1981. The North Atlantic during the last deglaciation. Palaeogeogr. Palaeoclim. Palaeoecol. 35: 145–214.Google Scholar
  38. Solem, J. O. & H. H. Birks, 2000. Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes, western Norway. J. Paleolim. 23: 49–56.Google Scholar
  39. Solhøy, I. W. & T. Solhøy, 2000. The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J. Paleolim. 23: 35–47.Google Scholar
  40. Stalsberg, M. K., 1995. Seinglasial sedimentasjon i Kråkenesvatnet, Vågsøy, Sogn og Fjordane. Cand. Scient. thesis, University of Tromsø.Google Scholar
  41. Taylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley, P. M. Grootes, P. A. Mayewski, J. W. C. White & L. K. Barlow, 1993. The ‘flickering switch’ of late Pleistocene climate change. Nature 361: 432–436.Google Scholar
  42. Taylor, K. C., P. A. Mayewski, R. B. Alley, E. J. Brook, A. J. Gow, P. M. Grootes, D. A. Meese, E. S. Saltzman, J. P. Severinghaus, M. S. Twickler, J. W. C. White, S. Whitlow & G. A. Zielinksi, 1997. The Holocene — Younger Dryas transition recorded at Summit, Greenland. Science 278: 825–827.Google Scholar
  43. ter Braak, C. J. F., 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr. Intell. Lab. Syst. 28: 165–180.Google Scholar
  44. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  45. ter Braak, C. J. F. & P. Šemilauer, 1998. CANOCO reference manual and user's guide to CANOCO for Windows. Microcomputer Power, Ithaca, 352 pp.Google Scholar
  46. van Breeman, N., A. Jenkins, R. F. Wright, D. J. Beerling, W. J. Arp, F. Berendse, C. Beier, R. Collins, E. van Dam, L. Rasmussen, P. J. S. Verburg & M. A. Wills, 1998. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project). Ecosystems 1: 345–351.Google Scholar
  47. van Dinter, M. & H. H. Birks, 1996. Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: implications for the late-glacial vegetational history of western Norway. Veg. Hist. Archaeobot. 5: 229–240.Google Scholar
  48. van Geel, B. & E. Kolstrup, 1978. Tentative explanation of the late glacial and early Holocene climatic changes in north-western Europe. Geologie en Mijnbouw 57: 87–89.Google Scholar
  49. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.Google Scholar
  50. Walker, I. R., J. P. Smol & D. R. Engstrom, 1991. Alleröd-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  51. Wright, R. F., 1998. Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems 1: 216–225.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Hilary H. Birks
    • 1
    • 2
  • R.W. Battarbee
    • 3
  • H.J.B. Birks
    • 1
    • 4
  1. 1.Botanical InstituteUniversity of BergenBergenNorway
  2. 2.Environmental Change Research CentreUniversity College LondonLondonUK
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK
  4. 4.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations