Advertisement

Journal of Paleolimnology

, Volume 21, Issue 3, pp 345–372 | Cite as

Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates

  • Philip A. Meyers
  • Elisabeth Lallier-vergés
Article

Abstract

Identification of the sources of organic matter in sedimentary records provides important paleolimnologic information. As the types and abundances of plant life in and around lakes change, the composition and amount of organic matter delivered to lake sediments changes. Despite the extensive early diagenetic losses of organic matter in general and of some of its important biomarker compounds in particular, bulk identifiers of organic matter sources appear to undergo minimal alteration after sedimentation. Age-related changes in the elemental, isotopic, and petrographic compositions of bulk sedimentary organic matter therefore preserve evidence of past environmental changes.

We review different bulk organic matter proxies of climate change in tropical and temperate sedimentary records ranging in age from 10-500 ka. Times of wetter climate result in enhanced algal productivity in lakes as a consequence of greater wash-in of soil nutrients, and these periods are recorded as elevated Rock-Eval hydrogen indices, lowered organic C/N ratios, less negative organic δ13C values, and increased organic carbon mass accumulation rates. Lowering of lake water levels, which typically depresses algal productivity, can also cause an apparent increase in organic carbon mass accumulation rates through suspension of sediments from lake margins and redeposition in deeper basins. Alternations between C3 and C4 watershed plants accompany climate changes such as glacial/interglacial transitions and wet/dry cycles, and these changes in land-plant types are evident in δ13C values of organic matter in lake sediments. Changes in climate-driven hydrologic balances of lakes are recorded in δD values of sedimentary organic matter. Visual microscopic examination of organic matter detritus is particularly useful in identifying changes in bulk organic matter delivery to lake sediments and therefore is important as an indicator of climate changes.

carbon isotyopes nitrogen isotopes hydrogen isotopes Rock-Eval analysis C/N ratios pollen organic carbon mass accumulation rates organic petrography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariztegui, D., P. Farrimond & J. A. McKenzie, 1996a. Compositional variations in sedimentary lacustrine organic matter and their implications for high Alpine Holocene environmental changes: Lake St. Moritz, Switzerland. Org. Geochem. 24: 453-461.Google Scholar
  2. Ariztegui, D., D. J. Hollander & J. A. McKenzie, 1996b. Algal dominated lacustrine organic matter can be either Type I or Type II: Evidence for biological, chemical and physical controls on organic matter quality. In Mello M. R., L. A. F. Trindade & M. H. R. Hessel (eds.), ALAGO Special Publication: Selected Papers from 4th Latin American Congress on Organic Geochemistry, Bucaramanga, Columbia, pp. 12-16.Google Scholar
  3. Absy, M. L., A. Cleef, M. Fournier, L. Martin, M. Servant, A. Siffeddine, M. F. Da Silva Ferreira, F. Soubies, K. Suguio, B. Turcq & T. van der Hammen, 1991. Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60,000 derniere anées. Première comparaison avec d'autres régions tropicales. C. R. Acad Sci. Paris, 312: 673-678.Google Scholar
  4. Anderson, R. Y., 1993. The varve chronometer in Elk Lake: Record of climatic variability and evidence for solar-geomagnetic 14Cclimate connection. In Bradbury J. P. & W. E. Dean (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geol. Soc. America Spec. Paper 276, Boulder (CO), pp. 45-67.Google Scholar
  5. Anderson, R. Y., J. P. Bradbury, W. E. Dean & M. Stuiver, 1993. Chronology of Elk Lake sediments: Coring, sampling, and timeseries construction. In Bradbury J. P. & W. E. Dean (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geol. Soc. America Spec.Paper 276, Boulder (CO), pp. 37-43.Google Scholar
  6. Aucour, A.-M., C. Hillaire-Marcel & R. Bonnefille, 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial peatbog. In Swart P. K., K. C Lohmann, J. McKenzie & S. Savin (eds.), Climate Change in Continental Isotopic Records. Am. Geophys. Un. Geophys. Monogr. 78, Washington (DC), pp. 343-351.Google Scholar
  7. Benson, L. V., P. A. Meyers & R. J. Spencer, 1991. Change in the size of Walker Lake during the past 5000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81: 189-214.Google Scholar
  8. Bernasconi, S. M, A. Barbieri & M. Simona, 1997. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol. Oceanogr. 42: 1755-1765.Google Scholar
  9. Bertrand, P. & E. Lallier-Vergès, 1993. Past sedimentary organic matter accumulation and degradation controlled by productivity. Nature 364: 786-788.Google Scholar
  10. Bertrand, P., S. Brocero, E. Lallier-Vergès, N.P. Tribovillard & E. Bonifay, 1992. Sédimentation organique lacustre et paléoclimats du Quaternaire Récent aux moyennes latitudes: exemple du Lac du Bouchet, Haute Loire, France. Bull. Soc. Géol. Fr. 163: 427-433.Google Scholar
  11. Beuning, K. R. M., K. Kelts, E. Ito & T. C. Johnson, 1997. Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology 25: 1083-1086.Google Scholar
  12. Bourbonniere, R. A. & P. A. Meyers, 1983. Characterization of sedimentary humic matter by alkaline hydrolysis. Org. Geochem. 3: 131-142.Google Scholar
  13. Bourdon, S., F. Laggoun-Défarge & C. Chenu, 1997. Impact of early diagenesis on sedimentary paludal organic matter. Example of Tritrivakely Lake (Madagascar), Bull. Soc. Géol. Fr. 168: 565-572.Google Scholar
  14. Bradbury, J. P, & K. V. Dieterich-Rurup, 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota. In Bradbury J. P. & W. E. Dean (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geol. Soc. America Spec. Paper 276, Boulder (CO), pp. 215-237.Google Scholar
  15. Buillit, N., E. Lallier-Vergès, J.-R. Disnar & J. L. Loizeau, 1997. Climatic changes and anthropogenic effects during the last millenium attested by the petrographical study of organic matter (Annecy, Le Petit Lac, France). Bull. Soc. Géol. Fr. 168: 573-584.Google Scholar
  16. Colman, S. M., G. A. Jones, M. Rubin, J. W. King, J. A. Peck & W. H. Orem, 1996. AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of dating sediments from a large, oligotrophic lake. Quat. Sci. Rev. 15: 669-684.Google Scholar
  17. Dean, W. E., 1993. Physical properties, mineralogy, and geochemistry of Holocene varved sediments from Elk Lake, Minnesota. In Bradbury J. P. & W. E. Dean (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geol. Soc. America Spec. Paper 276, Boulder (CO), pp. 135-157.Google Scholar
  18. Dean, W. E., 1997. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: Evidence from varved lake sediments. Geology 25: 331-334.Google Scholar
  19. Dean, W. E. & M. Stuiver, 1993. Stable carbon and oxygen isotope studies of the sediments of Elk Lake, Minnesota. In Bradbury J. P. & W. E. Dean (eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geol. Soc. America Spec. Paper 276, Boulder (CO), pp. 163-180.Google Scholar
  20. Dean, W. E., T. S. Ahlbrandt, R. Y. Anderson & J. P. Bradbury, 1996. Regional aridity in North America during the middle Holocene. The Holocene 6: 145-155.Google Scholar
  21. Derenne, S., C. Largeau & P. G. Hatcher, 1992. Structure of Chlorella fusca algaenan: relationships with ultralaminae in lacustrine kerogens; species-and environment-dependent variations in the composition of fossil ultralaminae. Org. Geochem. 18: 417-422.Google Scholar
  22. Derenne, S., C. Largeau & F. Taulelle, 1993. Occurrence of nonhydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens. Geochim. Cosmochim. Acta 57: 851-857.Google Scholar
  23. Di Giovanni, C., P. Bertrand, M. Campy & J. R. Disnar, 1997. Contribution de matière organique méso-cénozoïque dans un flux organique terrigène tardi et post-glaciaire (bassin de Chaillexon, Doubs, France). Bull. Soc. Géol. Fr. 168: 83-92.Google Scholar
  24. Dwyer, T. R., H. T. Mullins & S. C. Good, 1996. Paleoclimatic implications of Holocene lake-level fluctuations, Owasco Lake, New York. Geology 24: 519-522.Google Scholar
  25. Ehleringer, J. R., T. E Cerling & B. R. Helliker, 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112: 285-299.Google Scholar
  26. Engel, M. H. & S. A. Macko, 1993. Organic Geochemistry: Principles and Applications. Plenum, New York, p. 861.Google Scholar
  27. Ertel, J. R. & J. I. Hedges, 1984. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim. Cosmochim. Acta 48: 2065-2074.Google Scholar
  28. Ertel, J. R. & J. I. Hedges, 1985. Sources of sedimentary humic substances: vascular plant debris. Geochim. Cosmochim. Acta 49: 2097-2107.Google Scholar
  29. Espitalié, J., G. Deroo & F. Marquis, 1985a. La pyrolyse Rock Eval et ses applications. 2de partie. Revue de l'Institut Français du Pétrole 40: 755-784.Google Scholar
  30. Espitalié, J., G. Deroo & F. Marquis, 1985b. La pyrolyse Rock Eval et ses applications. 3ème partie. Revue de l'Institut Français du Pétrole 41: 73-89.Google Scholar
  31. Fogel, M. L. & L. A. Cifuentes, 1993. Isotope fractionation during primary production. In Engel M. H. & S. A. Macko (eds.) Organic Geochemistry: Principles and Applications: Plenum Press, New York: pp. 73-98.Google Scholar
  32. Gasse, F., J. R. Disnar, L. Ferry, E. Gibert, C. Kissel, F. Laggoun-Défarge, E. Lallier-Vergès, J. L. Saos, A. Sifeddine, M. Taïeb, P. Tucholka, E. Van Campo & D. Williamson, 1994. Un enregistrement continu de l'environnement au Quaternaire Supérieur en hémisphère Sud: le lac Tritrivakely (Madagascar). C. R. Acad Sci. Paris, 318: 1513-1519.Google Scholar
  33. Giger, W., C. Schaffner & S. G. Wakeham, 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochim. Cosmochim. Acta 44: 119-129.Google Scholar
  34. Hassan, K. M., J. B. Swinehart & R. F. Spalding, 1997. Evidence for Holocene environmental change from C/N ratios and δ13C and δ15N values in Swan Lake sediments, western Sand Hills, Nebraska. J. Paleolimnol. 18: 121-130.Google Scholar
  35. Higgits, S.-R., F. Oldfield & P.-G. Appleby, 1991. The record of land use change and soil erosion in the late Holocene sediments of the Petit Lac d'Annecy, eastern France. The Holocene 1: 14-28.Google Scholar
  36. Ho, E. S. & P. A. Meyers, 1994. Variability of early diagenesis in lake sediments: Evidence from the sedimentary record in an isolated tarn. Chem. Geol. 112: 309-324.Google Scholar
  37. Hodell, D. A. & C. L. Schelske, 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43: 200-214.Google Scholar
  38. Hollander, D. J. & J. A. MacKenzie, 1991. CO2 control on carbonisotope fractionation during aqueous photosynthesis: A paleopCO 2 barometer. Geology 19: 929-932.Google Scholar
  39. Hollander, D. J., J. A. MacKenzie & H. L. ten Haven, 1992. A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organiccarbon rich sediments. Geology 20: 825-828.Google Scholar
  40. Ishiwatari, R., 1985. Geochemistry of humic substances in lake sediments. In McKnight D.M. (ed.), Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. John Wiley, New York: pp. 147-180.Google Scholar
  41. Ishiwatari, R. & M. Uzaki, 1987. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan). Geochim. Cosmochim. Acta 51: 321-328.Google Scholar
  42. Jellison, R., R. F. Anderson, J. Melack & D. Heil, 1996. Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnol. Oceanogr. 41: 1539-1544.Google Scholar
  43. Kashiwaya, K., A. Yamamoto & K. Fukuyama, 1987. Time variations of erosional force and grain size in Pleistocene lake sediments. Quat. Res. 28: 61-68.Google Scholar
  44. Keeley, J. E. & D. R. Sandquist, 1992. Carbon: freshwater plants. Plant Cell Environ. 15: 1021-1035.Google Scholar
  45. Killops, S. D. & V. J. Killops, 1993. An Introduction to Organic Geochemistry. Longman, London, p. 265.Google Scholar
  46. Krishnamurthy, R. V., K. A. Syrup, M. Baskaran & A. Long, 1995. Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Science 269: 1565-1567.Google Scholar
  47. Lallier-Vergès, E. & P Albéric, 1990. Optical and geochemical study of organic matter in present oxic sediments (equatorial North Pacific Ocean NIXO area). Oceanol. Acta, Vol. Spec. 10: 281-291.Google Scholar
  48. Lallier-Vergès, E., A. Sifeddine, J. L. de Beaulieu, M. Reille, N. P. Tribovillard, P. Bertrand, T. Mongenot, N. Thouveny, J. R. Disnar & B. Guillet, 1993. Sensibilité de la matière organique aux variations climatiques du Tardi-Würm et de l'Holocène. Le lac du Bouchet (Haute Loire, France). Bull. de la Soc. Géol. Fr., 164: 661-673.Google Scholar
  49. Martin, L., M. Fournier, P. Moughiart, A. Sifeddine, B. Turcq, M. L. Absy & J. Flexor, 1993. Southern oscillation signal in South American palaeoclimatic data of the last 7,000 years. Quat. Res. 39: 338-346.Google Scholar
  50. Meyers, P. A., 1990. Impacts of regional Late Quaternary climate changes on the deposition of sedimentary organic matter in Walker Lake Nevada. Palaeogeogr. Palaeoclim. Palaeoecol. 78: 229-240.Google Scholar
  51. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114: 289-302.Google Scholar
  52. Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27: 213-250.Google Scholar
  53. Meyers, P. A. & B. J. Eadie, 1993. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org. Geochem. 20: 47-56.Google Scholar
  54. Meyers, P. A. & S. Horie, 1993. An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr. Palaeoclim. Palaeoecol. 105: 171-178.Google Scholar
  55. Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867-900.Google Scholar
  56. Meyers, P. A. & K. Takemura, 1997. Quaternary changes in delivery and accumulation of organic matter to sediments of Lake Biwa, Japan. J. Paleolimnol. 18: 211-218.Google Scholar
  57. Meyers, P. A. & N. Takeuchi, 1979. Fatty acids and hydrocarbons in surficial sediments of Lake Huron. Org. Geochem. 1: 127-138.Google Scholar
  58. Meyers, P. A., M. J. Leenheer & R. A. Bourboniere, 1995. Diagenesis of vascular plant organic matter components during burial in lake sediments. Aq. Geochem. 1: 35-52.Google Scholar
  59. Meyers, P. A., G. E. Tenzer, M. E. Lebo & J. E. Reuter, 1998. Sedimentary record of sources and accumulation of organic matter in Pyramid Lake, Nevada, over the past 1000 years. Limnol. Oceanogr. 43: 160-169.Google Scholar
  60. Müller, P. J., 1977. C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta 41, 765-776.Google Scholar
  61. Nakai, N., 1986. Paleoenvironmental features of Lake Biwa deduced from carbon isotope compositions and organic C/N ratios of the upper 800-m sample of 1400-m cored column. Proc. Jap. Acad. 62B: 279-282.Google Scholar
  62. Nakai N & M. Koyama, 1991. Die Rekonstruktion von Paläoumweltbedingungen unter Berucksichtigung der anorganischen Bestandteile, des C/N-und des Kohlenstoff-Isotopenverhaltnisses am Beispiel des 1400-m-Bohrkerns aus dem Biwa-See. In Horie S. (ed.) Die Geschichte des Biwa-Sees in Japan, Universitätsverlag Wagner, Innsbruck: pp. 149-160.Google Scholar
  63. O'Leary, M. H., 1988. Carbon isotopes in photosynthesis. Bioscience, 38: 328-336.Google Scholar
  64. Orem, W. H., H. E. Lerch & R. K. Kotra, 1993. Lignin oxidation products in sediments of Lake Baikal: Indicators of late Quaternary paleovegetation and paleoclimate change in North-central Asia. In Kuzmin M. I. & D. F. Williams (eds.) Scientific Results of the Baikal Drilling Project. Geol. Geofiz., 34: 89-100.Google Scholar
  65. Overpeck, J. T., 1996. Varved sediment records of recent seasonal to millenial-scale environmental variability. In Jones P. D., R. S. Bradley & J. Jouzel (eds.) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp. 479-498.Google Scholar
  66. Pang, P. C. & J. O. Nriagu, 1976. Distribution and isotope composition of nitrogen in Bay of Quinte (Lake Ontario) sediments. Chem. Geol. 18: 93-105.Google Scholar
  67. Pang, P. C. & J. O. Nriagu, 1977. Isotopic variations of the nitrogen in Lake Superior. Geochim. Cosmochim. Acta 41: 811-814.Google Scholar
  68. Patience, A. J., E. Lallier-Vergès, A. Sifeddine, P. Albéric & B. Guillet, 1995. Organic fluxes and early diagenesis in the lacustrine environment. In Lallier-Vergès E., N. Tribovillard & P. Bertrand (eds.) Organic matter accumulation. Lecture Notes in Earth Sciences, Springer, Heidelberg, 57: 145-156.Google Scholar
  69. Patience A. J., E. Lallier-Vergès, P. Albéric, A. Desprairies & N. Tribovillard, 1996. Relationships between organo-mineral and early diagenesis in the lacustrine environment: A study of surficial sediments from the Lac du Bouchet (Haute Loire, France). Quat. Sci. Rev. 15: 213-221.Google Scholar
  70. Peters, K. E.,1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 70: 318-329.Google Scholar
  71. Peters, K. E., R. E. Sweeney & I. R. Kaplan, 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 23: 598-604.Google Scholar
  72. Peterson, B. J. & R. W. Howarth, 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr. 32: 1195-1213.Google Scholar
  73. Prahl, F. G., J. R. Ertel, M. A. Goñi, M. A. Sparrow & B. Eversmeyer, 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta 58: 3035-3048.Google Scholar
  74. Prokopenko, A., D. F. Williams, P. Kavel & E. Karabanov, 1993. The organic indexes in the surface sediments of Lake Baikal water system and the processes controlling their variation. IPPCCE Newslett. 7: 49-55.Google Scholar
  75. Qiu, L., D. F. Williams, A. Gvorzdkov, E. Karabanov & M. Shimaraeva, 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21: 25-28.Google Scholar
  76. Ramanampisoa, L. & J. R. Disnar, 1994. Primary control of paleoproduction on organic matter preservation and accumulation in the Kimmeridge rocks of Yorkshire (UK). Org. Geochem. 21: 1153-1167.Google Scholar
  77. Rau, G., 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 201: 901-902.Google Scholar
  78. Rea, D. K. & S. M. Colman, 1994. Radiocarbon ages of pre-bomb clams and the hard-water effect in Lakes Michigan and Huron. J. Paleolimnol. 14: 89-91.Google Scholar
  79. Rea, D. K., R. A. Bourbonniere & P. A. Meyers, 1980. Southern Lake Michigan sediments: Changes in accumulation rates, mineralogy, and organic content. J. Great Lakes Res. 6: 321-330.Google Scholar
  80. Reille, M., & J. L. de Beaulieu, 1988. History of the Würm and Holocene vegetation in western Velay (Massif Central, France). Rev. Palaeobot. Palynol. 54: 238-248.Google Scholar
  81. Robbins, J. A. & D. N. Edgington, 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim. Acta 39: 285-304.Google Scholar
  82. Sarazin, G., G. Michard, I. Al Gharib & M. Bernat, 1992. Sedimentation rate and early diagenesis of particulate organic nitrogen and carbon in Aydat Lake (Puy de Dôme, France). Chem. Geol. 98: 307-316.Google Scholar
  83. Schwalb, A., S. M. Locke & W. E. Dean. 1995. Ostracode δ18O and δ13C evidence of Holocene environmental changes in the sediments of two Minnesota lakes. J. Paleolimnol. 14: 281-296.Google Scholar
  84. Servant, M., J. Maley, B. Turcq, M. L. Absy, P. Brenac, M. Fournier & M. P. Ledru. 1993. Tropical forest changes during the late Quaternary in African and South American lowlands. Global Planet. Changes 7: 35-47.Google Scholar
  85. Schelske, C. L. & D. A. Hodell, 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol. Oceanogr. 36: 961-975.Google Scholar
  86. Schelske, C. L. & D. A. Hodell, 1995. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol. Oceanogr. 40: 918-929.Google Scholar
  87. Sifeddine, A., F. Fröhlich, M. Fournier, L. Martin, M. Servant, F. Soubiès, B. Turcq, K. Suguio & C. Volkmer-Ribeiro, 1994a. Lacustrine sedimentation indicator of palaeoenvironments changes during the last 30ka BP. (Carajas, Amazonia, Brazil). C.R. Acad. Sci. 318: 1645-1652.Google Scholar
  88. Sifeddine, A., P. Bertrand, M. Fournier, L. Martin, M. Servant, F. Soubiès, K. Suguio & B. Turcq, 1994b. La sèdimentation organique lacustre en milieu tropical humide (Carajas, Amazonie orientale, Brésil): relation avec les changements climatiques au cours des 60000 dernières années. Bull. Soc. Géol. Fr. 165: 613-621.Google Scholar
  89. Sifeddine, A., P. Bertrand, E. Lallier-Vergès & A. J. Patience, 1996. Lacustrine organic fluxes and palaeoclimatic variations during the last 15 ka: Lac du Bouchet (Massif Central, France). Quat. Sci. Rev. 15: 203-211.Google Scholar
  90. Sifeddine, A., F. Laggoun-Défarge, E. Lallier-Vergès, J. R. Disnar, D. Williamson, F. Gasse & E. Gibert, 1995. Lacustrine organic sedimentation in the southern tropical zone in the last 36 kyears (Lake Tritrivakely, Madagascar). C. R. Acad Sci. Paris, 321: 385-391.Google Scholar
  91. Silliman, J. E., P. A. Meyers & R. A. Bourbonniere, 1996. Record of postglacial organic matter delivery and burial in sediments of Lake Ontario. Org. Geochem. 24: 463-472.Google Scholar
  92. Sollins, P., G. Spycher & C. A. Glassman, 1984. Net nitrogen mineralization from light-fraction and heavy fraction forest soil organic matter. Soil Biol. Biochem. 16: 31-37.Google Scholar
  93. Stuiver, M., 1975. Climate versus changes in 13C content of the organic component of lake sediments during the Quaternary. Quat. Res. 5: 251-262.Google Scholar
  94. Talbot, M. R. & T. Johannessen, 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110: 23-37.Google Scholar
  95. Talbot, M. R. & D. A. Livingstone, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr. Palaeoclim. Palaeoecol. 70: 121-137.Google Scholar
  96. Teichmüller, M., 1986. Organic petrology of source rocks, history and state of the art. Org. Geochem. 10: 581-599.Google Scholar
  97. Tenzer, G. E., P. A. Meyers & P. A. Knoop. 1997. Sources and distribution of organic and carbonate carbon in surface sediments of Pyramid Lake, Nevada. J. Sed. Res. 67: 887-893.Google Scholar
  98. Thompson, S. & G. Eglinton, 1978. The fractionation of a recent sediment for organic geochemical analysis. Geochim. Cosmochim. Acta 42: 199-207.Google Scholar
  99. Thouveny, N., J-L. de Beaulieu, E. Bonifay, K. M. Creer, J. Guiot, M. Icole, S. Johnsen, J. Jouzel, M. Reille, T. Williams & D. Williamson, 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371: 503-506.Google Scholar
  100. Tyson, R. V., 1995. Sedimentary Organic Matter. Chapman and Hall, London.Google Scholar
  101. Tzdakis, P. C., V. Andrieu, J. L. de Beaulieu, S. Crowhurst, M. Follieri, H. Hoghiemstra, D. Magri, M. Reille, L. Sadori, N. J. Shackleton & T. A. Wijmstra, 1997. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet. Sci. Lett. 150: 171-176.Google Scholar
  102. White, J. W. C., J. R. Lawrence & W. S. Broecker, 1994. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the northeastern United States. Geochim. Cosmochim. Acta 58: 851-862.Google Scholar
  103. Wieland, E., P. H. Santschi, P. Höhener & M. Sturm, 1993. Scavenging of Chernobyl 137Cs and natural 210Pb in Lake Sempach, Switzerland. Geochim. Cosmochim. Acta 57: 2959-2979.Google Scholar
  104. Williams, T., N. Thouveny & K. M. Creer, 1996. Paleomagnetic significance of the 300 ka mineral magnetic record from the sediments of Lac du Bouchet. Quat. Sci. Rev., 15: 223-236.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Philip A. Meyers
    • 1
  • Elisabeth Lallier-vergés
    • 2
  1. 1.Department of Geological Sciences and Center for Great Lakes and Aquatic SciencesThe University of MichiganAnn ArborUSA
  2. 2.URA 724 - FW 09 CNRS. Laboratoire de Géologie de la Matiére OrganiqueUniversité d'OrléansOrléans Cedex 2France

Personalised recommendations