Advertisement

Journal of Applied Phycology

, Volume 10, Issue 2, pp 135–144 | Cite as

Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis

  • Francisco J. L. Gordillo
  • Madeleine Goutx
  • Felix L. Figueroa
  • F. Xavier Niell
Article

Abstract

Lipid class composition of Dunaliella viridis Teodoresco was analysed using thin layer chromatography coupled with flame ionisation detection (TLC/FID technique). D. viridis was cultured under four different photon fluence rates and in darkness, and under two different conditions of CO2 supply (atmospheric and 1%) with and without nitrogen sufficiency. Nine lipid classes were identified and quantified. Total lipids per cell and acetone-mobile polar lipids decreased with light, while the percentage of sterols and triglycerides increased with increasing irradiance. Total phospholipids increase was related with growth rate while hydrocarbons, wax esters and sterol esters accumulated in darkness. There were almost no changes in total lipids per cell because of nitrogen limitation; however, nitrogen limitation led to higher changes in lipid class composition under 1% CO2 than under atmospheric CO2 levels. The main reserve lipid, triglycerides, accumulated in high amounts under 1% CO2 and nitrogen limitation, increasing from 1% to 22% of total lipids. The ratio sterols/acetone-mobile polar lipids could be an index of the 'light status' independently of nitrogen limitation, while the ratio triglycerides/total phospholipids could indicate any physiological stress uncoupling C and N metabolism and affecting the growth rate.

Light CO2 nitrogen lipids thin layer chromatography flame ionisation microalga batch culture Dunaliella viridis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Pl. Physiol. 51: 875–878.Google Scholar
  2. Ben-Amotz A, Avron M (1980) Glycerol, β-carotene, and dry algal meal production by commercial cultivation of Dunaliella. In Shelef G, Soeder CJ (eds) Algae Biomass Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam: 603–610.Google Scholar
  3. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purificacion and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18: 529–533.CrossRefGoogle Scholar
  4. Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 72–81.CrossRefGoogle Scholar
  5. Claustre H, Gostan J (1987) Adaptation of biochemical composition and cell size to irradiance in two microalgae: possible ecological implications. Mar. Ecol. Progr. Ser. 40: 167–174.Google Scholar
  6. Einspahr KJ, Maeda M, Thompson GA Jr. (1988) Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J. Cell Biol. 107: 529–538.PubMedCrossRefGoogle Scholar
  7. Emdadi D, Berland B (1989) Variation in lipid composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar Chem. 26: 215–225.CrossRefGoogle Scholar
  8. Evans RW, Kates M (1984) Lipid composition of halophilic species of Dunaliella from the dead sea. Arch. Microbiol. 140: 50–56.CrossRefGoogle Scholar
  9. Fried A, Tietz A, Ben-Amotz A, Eichenberger W (1982) Lipid composition of the halotolerant alga, Dunaliella bardawil. Biochim. Biophys. Acta. 713: 419–426.Google Scholar
  10. Gérin C, Goutx M (1993) Separation and quantification of phospholipids from marine bacteria with the Iatroscan Mark IV TLC-FID. J. Planar Chromatogr. 6: 307–312.Google Scholar
  11. Goutx M (1988) Particulate lipid survey in the Bedford basin (Nova Scotia) using thin-layer chromatography with flame ionization detection. Comparison of hydrocarbons data with gas chromatography analyses. Mar. Env. Res. 26: 83–95.CrossRefGoogle Scholar
  12. Goutx M, Mutaftshiev S, Bertrand JC (1987) Lipid and exopolisaccharide production during the hydrocarbon growth of a marine bacteria from the sea surface. Mar. Ecol. Progr. Ser. 40: 259–265.Google Scholar
  13. Inskeep WP, Bloom PR (1985) Extinction coefficients of Chlorophyll a and b in N, N-Dimethylformamide and 80% acetone. Pl. Physiol. 77: 483–485.Google Scholar
  14. Jiménez C, Niell FX (1991). Influence of temperature and salinity on carbon and nitrogen content in Dunaliella viridis Teodoresco under nitrogen sufficiency. Biores. Tech. 38: 91–94.CrossRefGoogle Scholar
  15. Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.PubMedGoogle Scholar
  16. Lemoine Y, Dubacq JP, Zabulon G (1982) Changes in light harvesting capacities and Δ3-trans-hexadecenoic acid content in dark and light grown Picea abies. Physiol. Veg. 30: 487–503.Google Scholar
  17. Lombardi AT, Wangersky PJ (1995) Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306: 1–6.CrossRefGoogle Scholar
  18. Lynch DV, Thompson GA Jr (1984) Chloroplast phospholipid molecular species alterations during low temperature acclimation in Dunaliella. Pl. Physiol. 74: 198–203.CrossRefGoogle Scholar
  19. Morales-Loo MR, Goutx M (1990) Effects of water-soluble fraction of the Mexican crude oil 'Isthmus Cactus' on growth, cellular content of chlorophyll a, and lipid composition of planktonic microalgae. Mar. Biol. 104: 503–509.CrossRefGoogle Scholar
  20. Morris RJ (1984) Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. II. Changes in the component fatty acids and sterol. J. exp. mar. Biol. Ecol. 75: 59–70.CrossRefGoogle Scholar
  21. Orcutt DM, Patterson GW (1975) Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp. Biochem. Physiol. 50B: 579–583.Google Scholar
  22. Parrish CC (1987) Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford basin, a marine inlet. Mar. Ecol. Progr. Ser. 35: 129–139.Google Scholar
  23. Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar. Ecol. Progr. Ser. 35: 119–128.Google Scholar
  24. Parrish CC, Wangersky PJ (1990) growth and lipid class composition of the marine diatom, Chaetoceros gracilis, in laboratory and mass culture turbidostats. J. Plankton Res. 12: 1011–1021.Google Scholar
  25. Parrish CC, Bodennec G, Gentien P (1994) Time courses of intracellular and extracellular lipid classes in batch cultures of the toxic dinoflagellate, Gymnodinium cf. nagasakiense. Mar. Chem. 48: 71–82.CrossRefGoogle Scholar
  26. Peeler TC, Stephenson MB, Einspahr KJ, Thompson GA Jr (1989) Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Pl. Physiol. 89: 970–976.Google Scholar
  27. Peeler TC, Thompson GA Jr (1990) Effects of light on phospholipid metabolism in Dunaliella salina. Physiol. Pl. 78: 324–330.CrossRefGoogle Scholar
  28. Saoudi-Helis L, Dubacq JP, Marty Y, Samain JF, Gudin C (1994) Influence of growth rate on pigment and lipid composition of the microalga Isochrysis aff. galbana clone T.iso. J. appl. Phycol. 6: 315–322.CrossRefGoogle Scholar
  29. Sargent JR (1976) The structure, metabolism and function of lipids in marine organisms. In Malins, Sargent JR (eds) Biochemical and Biophysical Perspectives, Vol. III. Academic Press, London: 149–218.Google Scholar
  30. Sheffer M, Fried A, Gottlieb HE, Tietz A, Avron M (1986) Lipid composition of the plasma-membrane of the halotolerant alga, Dunaliella salina. Biochim. Biophys. Acta. 857: 165–172.CrossRefGoogle Scholar
  31. Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J. Phycol. 23: 289–296.Google Scholar
  32. Uriarte I, Farias A, Hawkins AJS, Bayne BL (1993) Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen. J. appl. Phycol. 5: 447–453.CrossRefGoogle Scholar
  33. Volkman JK, Jeffrey SW, Nichols GI, Garland CD (1989) Fatty acid composition of 10 species of microalgae used in mariculture. J. exp. mar. Biol. Ecol. 128: 219–240.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Francisco J. L. Gordillo
    • 1
  • Madeleine Goutx
    • 2
  • Felix L. Figueroa
    • 1
  • F. Xavier Niell
    • 1
  1. 1.Departamento de Ecologia. Facultad de CienciasUniversidad de Málaga, Campus de Teatinos s/nMálagaSpain
  2. 2.Microbiologie Marine (CNRS, U.P.R. 223), Campus de LuminyMarseille cedex 9France

Personalised recommendations