Advertisement

Natural Hazards

, Volume 19, Issue 1, pp 47–77 | Cite as

Empirical Relationships for Debris Flows

  • Dieter Rickenmann
Article

Abstract

The assessment of the debris flow hazard potential has to rely on semi-quantitative methods. Due to the complexity of the debris-flow process, numerical simulation models of debris flows are still limited with regard to practical applications. Thus, an overview is given of empirical relationships that can be used to estimate the most important parameters of debris-flow behavior. In a possible procedure, an assessment of a maximum debris-flow volume may be followed by estimates of the peak discharge, the mean flow velocity, the total travel distance, and the runout distance on the fan. The applicability of several empirical equations is compared with available field and laboratory data, and scaling considerations are used to discuss the variability of the parameters over a large range of values. Some recommendations are made with regard to the application of the presented relationships by practicing engineers, apart from advocating field reconnaissance and searching for historic events wherever possible.

Debris-flow volume peak discharge flow velocity travel distance runout distance hazard assessment torrent debris flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele, G.: 1974, Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen [rockfalls in the Alps: distribution, morphology, and impacts], Wissenschaftliche Alpenvereinshefte 25, München (in German).Google Scholar
  2. Arattano, M., Mortara, G., Deganutti, A. M., and Marchi, L.: 1996, Esperienze di monitoraggio delle colate detriche nel torrenteMoscardo (Alpi Carniche) [experience from debris flow monitoring in the Moscardo torrent], Geoingeneria Ambientale e Mineraria, no. 2-3, Supplemento: Quaderni di Studi no. 20: Studi sui Debris Flow, pp. 33–43 (in Italian).Google Scholar
  3. Aulitzky, H.: 1970, Der Enterbach am 26. Juli 1969. Versuch der Analyse eines Murganges als Grundlage fuer die Neuerstellung einer zerstoerten Wildbachverbauung [the Enterbach on 26 July 1969. Attempt at analysing a debris flow as a basis for the reconstruction of destroyed control works], Wildbach-und Lawinenverbau 34(1), 31–66 (in German).Google Scholar
  4. Aulitzky, H.: 1973, Berücksichtigung der Wildbach-und Lawinengefahrengebiete als Grundlage der Raumordnung von Gebirgsländern [torrent and avalanche risk assessment as basis for land development in mountainous countries], 100 Jahre Hochschule für Bodenkultur, Band IV, Teil 2, pp. 81–117 (in German).Google Scholar
  5. Aulitzky, H.: 1980, Preliminary two-fold classification of torrents, Proc. Int. Symp. Interpraevent, Bad Ischl, Austria, Bd. 4, pp. 285–310.Google Scholar
  6. Aulitzky, H.: 1984, Vorlaeufige, zweigeteilte Wildbachklassifikation [preliminary two-fold classification of torrents], Wildbach-und Lawinenverbau 48 (Sonderheft Juni 1984), 7–60 (in German).Google Scholar
  7. Bathurst, J. C.: 1985, Flow resistance estimation in mountain rivers, J. Hydr. Engng, ASCE 111(4), 625–643.Google Scholar
  8. Costa, J. E.: 1984, Physical geomorphology of debris flows, In: J. E. Costa and P. J. Fleischer (eds), Developments and Applications of Geomorphology, Springer, Berlin, Germany, pp. 268–317.Google Scholar
  9. Costa, J. E.: 1988a, Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows, In: V. R. Baker et al. (eds), Flood Geomorphology, John Wiley & Sons, New York, pp. 113–122.Google Scholar
  10. Costa, J. E.: 1988b, Floods from dam failures, In: V. R. Baker et al. (eds), Flood Geomorphology, John Wiley & Sons, New York, pp. 439–463.Google Scholar
  11. D'Agostino, V.: 1996, Analisi quantitativa e qualitativa del trasporto solido torrentizio nei bacini montani de Trentino Orientale [quantitative and qualitative analysis of sediment transport in torrents of mountainous catchments of eastern Trentino], Scritti dedicati a Giovanni Tournon, Associazione Idrotecnica Italiana, Sezione Liguria Piemonte e Valle d'Aosta (in Italian).Google Scholar
  12. Davies, T. R. H.: 1990, Debris flow surges - experimental simulation, J. Hydrology (N.Z.) 29(1), 18–46.Google Scholar
  13. Davies, T. R. H.: 1994, Dynamically similar small-scale debris flow models, Proc. Int. Workshop on Floods and Innundations Related to Large Earth Movements, Trento, Italy, IAHR, pp. A12.1–A12.11.Google Scholar
  14. Davies, T. R. H.: 1997, Using hydroscience and hydrotechnical engineering to reduce debris flow hazards, Proc. First Int. Conf. on Debris Flow Hazards Mitigation, San Francisco, U.S.A., ASCE, pp. 787–810.Google Scholar
  15. Fannin, R. J. and Rollerson, T. P.: 1993, Debris flows: some physical characteristics and behaviour, Can. Geotech. J. 30, 71–81.Google Scholar
  16. Gallino, G. L. and Pierson, T. C.: 1985, Polallie Creek debris flow and subsequent dam-break flood of 1980, East Fork Hood River Basin, Oregon, U.S. Geological Survey Water-Supply Paper.Google Scholar
  17. Garcia Aragon, J. A.: 1996, A hydraulic shear stress model for rapid, highly concentrated flow, J. Hydr. Res. 34(5), 589–596.Google Scholar
  18. Griffiths, G. A.: 1981, Flow resistance in coarse gravel bed rivers, J. Hydr. Div., ASCE 107(7), 899–918.Google Scholar
  19. Haeberli, W.: 1983, Frequency and characteristics of glacier floods in the Swiss Alps, Ann. Glaciology 4, 85–90.Google Scholar
  20. Hampel, R.: 1977, Geschiebewirtschaft in Wildbächen [sediment budget of torrents], Wildbach-und Lawinenverbau 41(1), 3–34 (in German).Google Scholar
  21. Han, G. and Wang, D.: 1996, Numerical modeling of Anhui debris flow, J. Hydr. Engng, ASCE 122(5), 262–265.Google Scholar
  22. Harris, S. A. and Gustafson, C. A.: 1993, Debris flow characteristics in an area of continuous permafrost, St. Elias Range, Yukon Territory, Z. Geomorph. N.F. 37(1), 41–56.Google Scholar
  23. Henderson, F. M.: 1966, Open Channel Flow, MacMillan, New York.Google Scholar
  24. Hodel, H.: 1993, Untersuchung zur Geomorphologie, der Rauheit des Strömungswiderstandes und des Fliessvorganges in Bergbächen [study on the geomorphology, the roughness of the flow resistance, and the flow process in mountain streams], Diss. ETH Nr. 9830, ETH Zürich (in German).Google Scholar
  25. Hsü, K. J.: 1975, Catastrophic debris streams (sturzstroms) generated by rockfalls, Geol. Soc. Am. Bull. 86, 129–140.Google Scholar
  26. Hungr, O., Morgan, G. C., and Kellerhals, R.: 1984, Quantitative analysis of debris torrent hazards for design of remedial measures, Can. Geotechnical J. 21, 663–677.Google Scholar
  27. Hungr, O.: 1995, A model for the runout analysis of rapid flow slides, Can. Geotechnical J. 32, 610–623.Google Scholar
  28. Ikeya, H.: 1989, Debris flow and its countermeasures in Japan, Bull. Int. Ass. Engng Geol. 40, 15–33.Google Scholar
  29. Iverson, R. M. and LaHusen, R. G.: 1993, Friction in debris flows: inferences from large-scale flume experiments, In: H. W. Shen et al. (eds), Hydraulic Engineering '93, ASCE, Vol. 2, pp. 1604–1609.Google Scholar
  30. Iverson, R. M.: 1997, The physics of debris flows, Rev. Geophysics 35(3), 245–296.Google Scholar
  31. Jarrett, R. D.: 1984, Hydraulics of high-gradient streams, J. Hydr. Engng, ASCE 110(11), 1519–1539.Google Scholar
  32. Jitousono, T., Shimokawa, E., and Tsuchiya, S.: 1996, Debris flow following the 1994 eruption with pyroclastic flows in Merapi volcano, Indonesia, J. Jap. Soc. Erosion Control Engng 48(Special Issue), 109–116.Google Scholar
  33. Johnson, A. M.: 1984, Debris Flow, In: D. Brunsden and D. B. Prior (eds), Slope Instability, John Wiley and Sons, New York, pp. 257–361.Google Scholar
  34. Keremculov, V. A. and Zuckerman, I. G.: 1983, Sill-flows and transportation of sediments in the channels of steep slope. Modelling of sillflows, Proc. IAHR Congress, Moscow, pp. 325–328.Google Scholar
  35. Koch, T.: 1998, Testing of various constitutive equations for debris flow modelling, In: K. Kovar et al. (eds), Hydrology, Water Resources and Ecology in Headwaters, IAHS Publ. No. 248, Merano, Italy, pp. 249–257.Google Scholar
  36. Kronfellner-Kraus, G.: 1984, Extreme Feststofffrachten und Grabenbildungen von Wildbächen [extreme sediment loads and erosion of torrents], Proc. Int. Symp. Interpraevent, Villach, Austria, Bd. 2, pp. 109–118 (in German).Google Scholar
  37. Kronfellner-Kraus, G.: 1987, Zur Anwendung der Schätzformel fuer extreme Wildbach-Feststofffrachten im Süden und Osten Oesterreichs [on the application of the formula to estimate extreme sediment loads in torrents of southern and eastern Austria], Wildbach-und Lawinenverbau 51(106), 187–200 (in German).Google Scholar
  38. Li, T.: 1983, A mathematical model for predicting the extent of a major rockfall, Z. Geomorph. N.F. 27(4), 437–482.Google Scholar
  39. Liu, X.: 1995, Model experiments on risk range of debris flow fan, Proc. XX IUFRO Congress, Finland, Techn. Session on Natural Disasters in Mountainous Areas, pp. 27–37.Google Scholar
  40. Major, J. J. and Pierson, T. C.: 1992, Debris flow rheology: experimental analysis of fine-grained slurries, Wat. Resour. Res. 28(3), 841–857.Google Scholar
  41. Major, J. J.: 1997, Depositional processes in large-scale debris flow experiments, J. Geol. 105, 345–366.Google Scholar
  42. Marchi, L. and Tecca, P. R.: 1996, Magnitudo delle colate detriche nelle Alpi Orientali Italiane [magnitude of debris flows in the eastern Italian Alps], Geoingeneria Ambientale e Mineraria, no. 2-3, pp. 79–86 (in Italian).Google Scholar
  43. Mizuyama, T., Kobashi, S., and Ou, G.: 1992, Prediction of debris flow peak discharge, Proc. Int. Symp. Interpraevent, Bern, Switzerland, Bd. 4, pp. 99–108.Google Scholar
  44. Nakamura, J.: 1980, Investigation manual on prediction of occurrence of Dosekiryu [debris flows], delineation of dangerous zone affected by Dosekiryu and arrangement of warning and evacuation system in mountain torrents in Japan, Proc. Int. Symp. Interpraevent, Bad Ischl, Austria, Bd. 3, pp. 41–81.Google Scholar
  45. Okuda, S. and Suwa, H.: 1981, Some relationships between debris flow motion and microtopography for the Kamikamihori Fan, North Japan Alps, In: T. P. Burt and D. E. Walling (eds), Catchment Experiments in Fluvial Geomorphology, pp. 447–464.Google Scholar
  46. Pierson, T. C.: 1980, Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand, Earth Surf. Proc. and Landf. 5, 227–247.Google Scholar
  47. Pierson, T. C.: 1985, Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington, Geol. Soc. Am. Bul. 96, 1056–1069.Google Scholar
  48. Pierson, T. C.: 1986, Flow behavior of channelized debris flows, Mt. St. Helens, Washington, In: A. D. Abraham (ed), Hillslope Processes, Allen & Unwin, Boston, pp. 269–296.Google Scholar
  49. Pierson, T. C., Janda, R. J., Thouret, J. C., and Borrero, C. A.: 1990, Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Columbia, and consequent mobilization, flow and deposition of lahars, J. Volcanology Geothermal Res. 41, 17–66.Google Scholar
  50. Pierson, T. C.: 1995, Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models, J. Volcanology Geothermal Res. 66, 283–294.Google Scholar
  51. PWRI: 1988, Technical standard for measures against debris flow (draft), Technical Memorandum of PWRI, No. 2632, Ministry of Construction, Japan.Google Scholar
  52. Rickenmann, D.: 1990, Debris flows 1987 in Switzerland: Modelling and sediment transport, In: R. O. Sinniger and M. Monbaron (eds), Hydrology in Mountainous Regions II, IAHS Publ. No. 194, pp. 371–378.Google Scholar
  53. Rickenmann, D.: 1991, Hyperconcentrated flow and sediment transport at steep slopes, J. Hydr. Engng, ASCE 117(11), 1419–1439.Google Scholar
  54. Rickenmann, D. and Zimmermann, M.: 1993, The 1987 debris flows in Switzerland: documentation and analysis, Geomorphology 8, 175–189.Google Scholar
  55. Rickenmann, D.: 1994, An alternative equation for the mean velocity in gravel-bed rivers and mountain torrents, Proc. 1994 Nat. Conf. on Hydraulic Engineering, Buffalo N.Y., U.S.A., ASCE, Vol. 1, pp. 672–676.Google Scholar
  56. Rickenmann, D.: 1995, Beurteilung von Murgängen [Assessment of debris flows], Schweizer Ingenieur und Architekt (48), 1104–1108 (in German).Google Scholar
  57. Rickenmann, D.: 1996, Fliessgeschwindigkeit in Wildbächen und Gebirgsflüssen [Flow velocity in torrents and mountainous streams], Wasser, Energie, Luft 88(11/12), 298–304 (in German).Google Scholar
  58. Rickenmann, D. and Koch, T.: 1997, Comparison of debris flow modelling approaches, Proc. First Int. Conf. on Debris Flow Hazards Mitigation, San Francisco, U.S.A., ASCE, pp. 576–585.Google Scholar
  59. Rickenmann, D.: 1998, Antwort zu Diskussion von ‘Fliessgeschwindigkeit in Wildbächen und Gebirgsflüssen’ [Reply to discussion of ‘Flow velocity in torrents and mountainous streams’ by D. Rickenmann], Wasser, Energie, Luft 90(5/6), 133–134 (in German).Google Scholar
  60. Ruf, G.: 1990, Fliessgeschwindigkeiten in der Ruetz/Stubaital/Tirol [Flow velocities in the Ruetz/Stubai valley/Tyrol], Wildbach-und Lawinenverbau 54(115), 219–227 (in German).Google Scholar
  61. Rutherford, I. D., Bishop, P., and Loffler, T.: 1994, Debris flows in northeastern Victoria, Australia: occurrence and effects on the fluvial system, In: Variability in Stream Erosion and Sediment Transport, IAHS Publ. No. 224, pp. 359–369.Google Scholar
  62. Scheidegger, A. E.: 1973, On the prediction of the reach and velocity of catastrophic landslides, Rock Mechanics 5, 231–236.Google Scholar
  63. Schilling, S. P. and Iverson, R. M.: 1997, Automated, reproducable delineation of zones at risk from inundation by large volcanic debris flows, Proc. First Int. Conf. on Debris Flow Hazards Mitigation, San Francisco, U.S.A., ASCE, pp. 176–186.Google Scholar
  64. Suwa, H., Okunishi, K., and Sakai, M.: 1993, Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, Proc. of Sediment Problems: Strategies for Monitoring, Prediction and Control, Yokohama, IAHS Publ. No. 217, pp. 239–247.Google Scholar
  65. Takahashi, T.: 1991, Debris Flow, IAHR Monograph Series, Balkema Publishers, The Netherlands.Google Scholar
  66. Takahashi, T., Sawada, T., Suwa, H., Mizuyama, T., Mizuhara, K., Wu, J., Tang, B., Kang, Z., and Zhou, B: 1994, Japan-China joint research on the prevention from debris flow hazards, Research Report, Japanese Ministry of Education, Science and Culture, Int. Scientific Research Program No. 03044085.Google Scholar
  67. Takei, A.: 1980, Interdependence of sediment budget between individual torrents and a river-system, Proc. Int. Symp. Interpraevent, Villach, Austria, Bd. 2, pp. 35–48.Google Scholar
  68. Thompson, S. M. and Campbell, P. L.: 1979, Hydraulics of a large channel paved with boulders, J. Hydr. Res. 17(4), 341–354.Google Scholar
  69. Thorne, C. R. and Zevenbergen, L. W.: 1985, Estimating mean velocity in mountain rivers, J. Hydr. Engng, ASCE 111(4), 612–624.Google Scholar
  70. VanDine, D. F.: 1985, Debris flows and debris torrents in the Southern Canadian Cordillera, Can. Geotech. J. 22, 44–68.Google Scholar
  71. VAW: 1992, Murgänge 1987: Dokumentation und Analyse [Debris flows 1987: documentation and analysis], Unpublished Report, No. 97.6, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich (in German).Google Scholar
  72. Walder, J. S. and O'Connor, J. E.: 1997, Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams, Water Resour. Res. 33(10), 2337–2348.Google Scholar
  73. Wang, Z. and Zhang, X.: 1990, Initiation and laws of motion of debris flow, Proc. Hydraulics/ Hydrology of Arid Lands, ASCE, pp. 596–691.Google Scholar
  74. Watanabe, M. and Ikeya, H.: 1981, Investigation and analysis of volcanic mud flow on Mt. Sakurajima, Japan, Proc. Symp. on Erosion and Sediment Transport Measurement, Florence, Italy, IAHS Publ. No. 133, pp. 245–256.Google Scholar
  75. Webb, R. H., Pringle, P. T., Reneau, S. L., and Rink, G. R.: 1988, Monument Creek debris flow, 1984: implications for formation of rapids on the Colorado River in Grand Canyon National Park, Geology 16, 50–54.Google Scholar
  76. Zeller, J.: 1985, Feststoffmessung in kleinen Gebirgseinzugsgebieten [Sediment measurement in small mountainous catchments], Wasser, Energie, Luft 77(7/8), 246–251 (in German).Google Scholar
  77. Zimmermann, M., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G.: 1997a, Murganggefahr und Klimaänderung - ein GIS-basierter Ansatz [Debris flow risk and climatic change - a GIS-based approach], Schlussbericht NFP 31, vdf-ETH Zürich, Switzerland (in German).Google Scholar
  78. Zimmermann, M., Mani, P., and Romang, H.: 1997b, Magnitude-frequency aspects of Alpine debris flows, Eclogae Geologicae Helvetiae 90(3), 415–320.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dieter Rickenmann
    • 1
  1. 1.Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations