Landscape Ecology

, Volume 14, Issue 5, pp 479–492

Management of matter fluxes by biogeochemical barriers at the agricultural landscape level⋆

  • L. Ryszkowski
  • A. Bartoszewicz
  • A. Kędziora
Article
  • 86 Downloads

Abstract

Long-term studies of the influence of biogeochemical barriers (shelterbelts and stretches of meadows) on water cycling and control of ground water pollution in an agricultural landscape have shown that more solar energy is used for evapotranspiration in shelterbelts than in cultivated fields or meadows. Therefore, annual water runoff from cultivated fields is about 170% higher than from coniferous forest, 60% higher than deciduous forest and 16% higher than meadows. The differences in evapotranspiration rates between shelterbelts and meadows increases when additional energy input for evapotranspiration is provided by transport of heat from cultivated fields to these habitats by advection. The average water percolation time through the unsaturated zone of soils varies by 100%. A shelterbelt, having a mixed species composition, more effectively screens the passage of chemical compounds dissolved in ground water than shelterbelts composed of one tree species. Peat soils have a very high cation exchange capacity which increases the efficiency of riparian meadows for the control of ground water pollution. Natural landscape features which assist in controlling matter cycles are of great importance for modifying chemical outputs from agricultural watersheds.

agricultural landscape evapotranspiration ground water flux meadows non-point pollution shelterbelts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartoszewicz, A. 1979. Mineralisation of ground and surface waters in different soils. Roczniki Akademii Rolniczej, Poznań 91: 1–53. (In Polish).Google Scholar
  2. Bartoszewicz, A. 1990. Chemical compounds in ground water of agricultural watershed under soil climatological conditions of Kościan Plain. In Obieg wody i bariery biogeochemiczne w krajobrazie rolniczym. pp. 127–142. Edited by L. Ryszkowski, J. Marcinek and A. Kędziora. Adam Mickiewicz University Press, Poznań. (In Polish).Google Scholar
  3. Bartoszewicz, A. 1994. The chemical compounds in surface waters of agricultural catchments (under the soil, weather conditions of the Kościan lowland). Roczniki Akademii Rolniczej, Poznań 250: 5–68. (In Polish).Google Scholar
  4. Borowiec, S. and Zabłocki, Z. 1988. Agricultural diffuse pollution of drainage waters in agricultural watersheds and drainaged fields in North-West Poland. Zeszyty Naukowe Akademii Rolniczej, Szczecin 134, Rolnictwo 45: 27–75. (In Polish).Google Scholar
  5. Burt, T.P. and Haycock, N.E.1993. Controlling losses of nitrate by changing land use. In Nitrate: Processes Patterns and Management. pp. 341–367. Edited by Burt, T.P., Healthwaite, A.L., Trudgill, S.T. Wiley J., Chichester.Google Scholar
  6. Cooper, A.B. 1990. Nitrate depletion in the riparian zone and small headwater catchment. Hydrologia 202: 12–26.Google Scholar
  7. Cooper, J.R., Gilliam, J.W., Daniels, R.B. and Robage, W.P. 1987. Riparian areas as filters for agricultural sediment. Soil Sci. Soc. Am. J. 51: 416–420.Google Scholar
  8. Cosser, P.Z. 1989. Nutrient concentration-flow relationships and loads in the South Pine River, Southeastern Queensland. Austr. J. Mar. Freshwater Res. 40: 613–630.Google Scholar
  9. Dillaha, T.A., Reneau, R.B. and Mostaghinus, Lee D. 1989. Vegetative filter strips for agricultural non-point source pollution control. Trans. ASAE 32: 513–519.Google Scholar
  10. Folkenmark, M. 1991. Perspectives on a changing hydroclimate: land use implications. In Land use changes in Europe. pp. 127–151. Edited by Brouwer, F.M. Thomas, A.J., Chadwick, M.J. Kluwer Academic Publishers, Dordrecht.Google Scholar
  11. Fotyma, M., Mercik, S. and Faber, A. 1987. Chemiczne podstawy źyzności gleb i nawoźenia. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa, 320 pp.Google Scholar
  12. Hillbricht-Ilkowska, A., Ryszkowski, L. and Sharpley, A.N. 1995. Phosphorus transfers and landscape structure: riparian sites and diversified land use patterns. In Phosphorus in the global environment. pp. 201–228. Edited by Tiessen, H. Wiley J. Chichester.Google Scholar
  13. Jacobs, T.C. and Gilliam, J.W. 1985. Riparian losses of nitrate from agricultural drainage waters. J. Env. Qual. 14: 472–478.Google Scholar
  14. Kauppi, L. 1990. Hydrology: Water quality changes. In Toward ecological sustainability in Europe. pp. 43–66. Edited by M.A. Solomon and L. Kauppi. International Institute for Applied System Analysis, Laxenburg, Austria.Google Scholar
  15. Kędziora, A., Olejnik, J. and Kapuściński, J. 1989. Impact of landscape structure on heat and water balance. Ecol. Int. 17: 1–17.Google Scholar
  16. Kędziora, A. and Tamulewicz, J. 1990. Heat balance. In Obieg wody i bariery biogeochemiczne w krajobrazie rolniczym. pp. 47–57. Edited by L. Ryszkowski, J. Marcinek and A. Kędziora. Wydawnictwo Naukowe UAM, Poznań, 47–57.Google Scholar
  17. Kędziora, A., Ryszkowski, L. and Kundzewicz, Z. 1995. Phosphate transport and retention in a riparian meadow – a case study. In Phosphorus in the global environment. pp. 229–234. Edited by Tiessen H. Wiley, Chichester.Google Scholar
  18. Knauer, N. and Mander, U. 1989. Untersuchungen über die Filterwirkung Saumbiotope an Gewassen in Schleswig-Holstein. Z.F. Kulturtechnick und Landentwicklung 30: 365–376.Google Scholar
  19. Knowles, R. 1981. Denitrification. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33: 315–329.Google Scholar
  20. Krygowski, B. 1961. Physical geography of Great Poland Lowland. Part 1. Geomorphology. Poznańskie Towarzystwo Przyjaciół Nauk, Poznań, 116 pp. (In Polish).Google Scholar
  21. Lawford, R.G. 1993. Regional hydrologic responses to global change in Western North America. In Earth system responses to global change. pp. 73–99. Edited by Mooney, H.A., Fuentes, E.R. and Kronberg B.J. Academic Press, New York.Google Scholar
  22. Lvovich, M.J. and White, G.F. 1993. Use and transformation of terrestrial water systems. In The earth as transformed by human action. pp. 235–252. Edited by Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T. and Meyer, W.B. Cambridge Univ. Press, Cambridge.Google Scholar
  23. Marcinek, J. and Komisarek, J. 1990. Cation exchange capacity and travel time of solutes from the soil surface down to the ground water table. Poznańskie Towarzystwo Przyjaciół Nauk. Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych 69: 71–85. (In Polish).Google Scholar
  24. Marcinek, J., Spychalski, M. and Komisarek. J. 1990. Water cycling in agricultural micro watershed. In Obieg wody i bariery biogeochemiczne w krajobrazie rolniczym. pp. 69–96. Edited by L. Ryszkowski, J. Marcinek and A. Kędziora. Wydawnictwo Naukowe UAM, Poznań. (In Polish).Google Scholar
  25. Margowski, Z., Bartoszewicz, A. and Siwiński, A. 1976. Soil formed from boulder loam containing sand in the upper layers of the Końcian Plain. Pol. Ecol. Stud. 2: 5–13.Google Scholar
  26. Misztal, M., Smal, H. and Górniak, A. 1990. Changes in the chemical composition of shallow underground waters of the areas utilized in different ways. Pol. J. Soil Sci 23: 37–44.Google Scholar
  27. Muscutt, A.D., Harris, G.L., Bailey, S.W. and Davis, D.B. 1993. Buffer zones to improve water quality a review of their potential use in UK agriculture. Agric. Ecosys. Env. 45: 59–77.Google Scholar
  28. OECD. 1986. Water pollution by fertilizers and pesticides. Organisation for Economic Co-operation and Development. Paris, 144 pp.Google Scholar
  29. Omernik, J.M., Abernathy, A.R. and Male, L.M. 1981. Stream nutrient levels and proximity of agricultural and forest land to streams: some relationships. J. Soil Water Cons. 36: 227–231.Google Scholar
  30. Pasławski, Z. 1990. Water balance of Wielkopolska. In Obieg wody i bariery biogeochemiczne w krajobrazie rolniczym. pp. 59–68. Edited by L. Ryszkowski, J. Marcinek and A Kędziora. Wydawnictwo Naukowe UAM, Poznań, 59–68.Google Scholar
  31. Paulukevicius, G. 1981. Ecological role of the forest stand of the lake slopes. Pergale, Wilno, 191 pp.Google Scholar
  32. Peterjohn, W.T. and Correll, D.L. 1984. Nutrient dynamics in agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.Google Scholar
  33. Philips, J.D. 1989. Non-point source pollution control effectivness of riparian forests along a coastal plain river. J. Hydrol. 10: 221–237.Google Scholar
  34. Pinay, G. and Decamps, H. 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface waters: a conceptual model. Regulated Rivers 2: 507–516.Google Scholar
  35. Pokojska, U. 1988. Potential possibilities of retention of nutrients by soils of field protecting belts of tress and meadows in agricultural landscapes. Roczniki Gleboznawcze 39: 51–61.Google Scholar
  36. Prusinkiewicz, Z., Józefkowicz-Kotlarz, J., Kwiatkowska, A. and Pokojska, U. 1990. The effect of shelterbelts on the nutrient cycling in agricultural landscapes. Poda a produkcia agroekosystemów. pp. 108–126. Bratislava.Google Scholar
  37. Ryszkowski, L. 1984. Ecological functions of ecosystems in nature protected areas. In Ekologiczne, medyczne i socjologiczne przesłanki kszta»towania obszarów przyrodniczo cennych. Edited by L. Ryszkowski. Państwowe Wydawnictwo Naukowe, Poznań, 61–73. (In Polish).Google Scholar
  38. Ryszkowski, L. 1989. Control of energy and matter fluxes in agricultural landscapes. Agric. Ecosyst. Env. 27: 107–118.Google Scholar
  39. Ryszkowski, L. 1992. Agriculture and non-point sources of environment pollution. Postępy Nauk Rolniczych 4: 3–14. (In Polish).Google Scholar
  40. Ryszkowski, L. and Bartoszewicz, A. 1989. Impact of agricultural landscape structure on cycling of inorganic nutrients. pp. 241–246. In Ecology of arable land. Edited by M. Clarholm and L. Bergstrom. Kluwer Academic Publishers. Dordrecht.Google Scholar
  41. Ryszkowski, L., Karg, J., Szpakowska, B. and Źyczyńska-Bałoniak, I. 1989. Distribution of phosphorus in meadow and cultivated field ecosystems. In Phosphorus cycles in terrestrial and aquatic ecosystems. pp. 178–192. Edited by H. Tissen. Turner-Warwick Communications, Saskatoon, Canada, 178–192.Google Scholar
  42. Ryszkowski, L. and Kędziora, A. 1987. Impact of agricultural landscape structure on energy flow and water cycling. Landscape Ecol. 1: 85–94.Google Scholar
  43. Ryszkowski, L. and Kędziora, A. 1993. Energy control of matter fluxes through land-water ecotones in an agricultural landscape. Hydrologia 251: 239–248.Google Scholar
  44. Schroeder, G. 1968. Ladwirtschaftlicher Wasser-bau. Springer-Verlag, Berlin. 728 pp.Google Scholar
  45. Stoutjesdijk, P.H. and Barkman, J.J. 1992. Microclimate, vegetation and fauna. Opulus Press, Uppsala 216 pp.Google Scholar
  46. Traczyk, T. 1985. The role of plant subsystem in matter flow in the agricultural landscape. Pol. Ecol. Stud. 1985: 445–466.Google Scholar
  47. Vanek, V. 1991. Riparian zone as a source of phosphorus for a groundwater dominated lake. Water Res. 25: 409–418Google Scholar
  48. Young, R. A., Huntrods, T. and Anderson, W. 1980. Effectivness of vegetated buffer atrips in controlling pollution from feed lot runoff. J. Environ. Qual. 9: 483–487.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • L. Ryszkowski
    • 1
  • A. Bartoszewicz
    • 1
  • A. Kędziora
    • 1
  1. 1.Research Centre for Agricultural and Forest Environment, Polish Academy of SciencesPoznańPoland

Personalised recommendations