Marketing Letters

, Volume 10, Issue 3, pp 187–203 | Cite as

Extended Framework for Modeling Choice Behavior

  • Moshe Ben-Akiva
  • Daniel McFadden
  • Tommy Gärling
  • Dinesh Gopinath
  • Joan Walker
  • Denis Bolduc
  • Axel Börsch-Supan
  • Philippe Delquié
  • Oleg Larichev
  • Taka Morikawa
  • Amalia Polydoropoulou
  • Vithala Rao


We review the case against the standard model of rational behavior and discuss the consequences of various ‘anomalies’ of preference elicitation. A general theoretical framework that attempts to disentangle the various psychological elements in the decision-making process is presented. We then present a rigorous and general methodology to model the theoretical framework, explicitly incorporating psychological factors and their influences on choices. This theme has long been deemed necessary by behavioral researchers, but is often ignored in demand models. The methodology requires the estimation of an integrated multi-equation model consisting of a discrete choice model and the latent variable model system. We conclude with a research agenda to bring the theoretical framework into fruition.

Rationality behavioral decision theory psychological factors latent constructs choice modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajzen, I. (1991). “The theory of planned behavior, ” Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  2. Bargh, J. A., and Barndollar, K. (1996). “Automaticity in action: The unconscious as repository of chronic goals and motives, ” In P. M. Gollwitzer and J. A. Bargh (Eds.), The psychology of action: Linking cognition and motivation to behavior, 457–482. New York: Guildford Press.Google Scholar
  3. Ben-Akiva, M., J. Walker, A. T. Bernardino, D. A. Gopinath, T. Morikawa, and A. Polydoropoulou (1998). “Integration of Choice and Latent Variable Models, ” MIT Working Paper.Google Scholar
  4. Ben-Akiva, M. and B. Boccara (1995). “Discrete Choice Models with Latent Choice Sets, ” International Journal of Research in Marketing 12: 9–24.Google Scholar
  5. Ben-Akiva, M., D. McFadden, M. Abe, U. Böckenholt, D. Bolduc, D. Gopinath, T. Morikawa, V. Ramaswamy, V. Rao, D. Revelt, and D. Steinberg (1997). “Modeling Methods for Discrete Choice Analysis, ” Marketing Letters 8, 3: 273±286.Google Scholar
  6. Bearden, W. O., R. G. Netemeyer, and M. F. Mobley. (1993). Handbook of Marketing Scales. Newbury Park, CA.: Sage Publications.Google Scholar
  7. Bernardino, A. T. (1996). Telecommuting: Modeling the Employer's and the Employee's Decision-Making Process. Garland Publishing, New York.Google Scholar
  8. Boccara, B. (1989). Modeling Choice Set Formation in Discrete Choice Models. Ph.D. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology.Google Scholar
  9. Börsch-Supan, A., D. L. McFadden, and R. Schnabel (1996). Living Arrangements: Health and Wealth Effects. Advances in the Economics of Aging. D. A. Wise ed. The University of Chicago Press.Google Scholar
  10. Camerer, C. (1997). “Progress in behavioral game theory, ” Journal of Economic Perspectives, 11, 167–168.Google Scholar
  11. Camerer, C. F., Johnson, E. J. (1991). “The process-performance paradox in expert judgment, ” In: Toward a General Theory of Expertise (K. A. Ericson and J. Smith, eds.), pp. 195–217. Cambridge University Press, Cambridge.Google Scholar
  12. Casey, J. T., Ph. Delquié (1995). “Stated vs Implicit Willingness to Pay Under Risk, ” Organizational Behavior and Human Decision Processes, 61, 123–137.Google Scholar
  13. Delquié, Ph. (1997). 'Bi-matching': a new preference assessment method to reduce compatibility effects. Management Science, 43, 640–658.Google Scholar
  14. Elrod, T. (1998). “Obtaining Product-Market Maps from Preference Data, ” American Marketing Association Advanced Research Techniques Forum, Keystone, Colorado.Google Scholar
  15. Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press, Stanford, CA.Google Scholar
  16. GaÈrling, T. (1992) “The Importance of Routines for the Performance of Everyday Activities, ” Scandinavian Journal of Psychology, 33, 170–177.Google Scholar
  17. Gärling, T., Karlsson, N., Romanus, J., and Selart, M. (1997). “Influences of the past on choices of the future, ” In R. Ranyard, R. Crozier & O. Svenson (Eds.), Decision making: Cognitive models and explanations, 167–188. London: Routledge.Google Scholar
  18. Gärling, T., Gillholm, R. (1998). “When Do Stated Preferences (SP) Predict Actual Behavior?, ” Working Paper, Goteborg University.Google Scholar
  19. Gigerenzer, G., and Goldstein, D. G. (1996). “Reasoning the fast and frugal way: Models of bounded rationality, ” Psychological Review, 98, 506–528.Google Scholar
  20. Gopinath, D. A. (1994). Modeling Heterogeneity in Discrete Choice Processes: Application to Travel Demand. Ph.D. Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.Google Scholar
  21. Isen, A. M. (1987). “Positive affect, cognitive processes, and social behavior, ” In L. Berkowitz (Ed.), Advances in experimental social psychology, Vol. 20, 203–253. San Diego, CA: Academic Press.Google Scholar
  22. Janis, I. L. and L. Mann (1977). Decision Making: A Psychological Analysis of Conflict, Choice, and Commitment. The Free Press, New York.Google Scholar
  23. Kahle, L. R., Beatty, S. E., & Homer, P. (1986). Alternative measurement approaches to consumer values: The list of values (LOV) and values and life styles (VALS). Journal of Consumer Research, 13, 405–409.Google Scholar
  24. Kahneman, D., Ritov, I., Schkade, D. (1998) “Economists have Preferences, Psychologists Have Attitudes: An Analysis of Dollar Responses to Public Issues, ” Princeton University Working Paper.Google Scholar
  25. Kühberger, A. (1998). The influence of framing on risky decisions: A meta-analysis. Organizational Behavior and Human Decision Processes. 75, 23–55.Google Scholar
  26. Lindberg, E., Gärling, T., and Montgomery, H. (1989). “Differential predictability of preferences and choices, ” Journal of Behavioral Decision Making, 2, 205–219.Google Scholar
  27. Loewenstein, G. (1996) “Out of control: Visceral Influences on Behavior, ” Organizational Behavior and Decision Processes 65, 272–92.Google Scholar
  28. Mano, H., Oliver, L. R.. (1993). “Assessing the dimensionality and structure of consumption experience: Evaluation, feeling and satisfaction. ” Journal of Consumer Research 20, 451–466.Google Scholar
  29. McFadden, D. (1981) “Econometric Models of Probabilistic Choice, ” in C. Manski & D. McFadden (eds) Structural Analysis of Discrete Data with Econometric Applications, Cambridge: MIT Press.Google Scholar
  30. McFadden, D. (1997a) “Rationality for Economists, ” NSF Symposium on Eliciting Preferences, July 29.Google Scholar
  31. McFadden, D. (1997b) “Computing Willingness-to-Pay in Random Utility Models, ” in R. Hartman and J. Moore (eds), Essays in Honor of John Chipman, forthcoming.Google Scholar
  32. Messick, D. M. (1993). “Equality as a decision heuristic, ” In B. Mellers & J. Baron (Eds.), Psychological perspectives on justice: Theory and applications. New York: Cambridge University Press.Google Scholar
  33. Montgomery, H. (1983). “Decision rules and the search for a dominance structure: Towards a process model of decision making, ” In P. C. Humphreys, O. Svenson, & A. Vari (eds.), Analyzing and aiding decision processes, 343–369. Amsterdam: North-Holland.Google Scholar
  34. Montgomery, H., and Svenson. O. (1989). “A think aloud study of dominance structuring in decision processes, ” In H. Montgomery & O. Svenson (Eds.), Process and structure in human decision making, 420–437, Chichester, UK: Wiley.Google Scholar
  35. Morikawa, T. (1989). Incorporating Stated Preference Data in Travel Demand Analysis. Ph.D. Thesis, Massachusetts Institute of Technology.Google Scholar
  36. Morikawa, T., M. Ben-Akiva, and D. McFadden (1996). “Incorporating Psychometric Data in Econometric Choice Models, ” Working paper, Massachusetts Institute of Technology.Google Scholar
  37. Newell, A. and H. A. Simon (1972). Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  38. Payne, J., Bettman, J., Johnson, E. (1992) “Behavioral Decision Research: A Constructive Process Perspective, ” Annual Review of Psychology, 43, 87–131.Google Scholar
  39. Payne, J. W., J. R. Bettman and E. J. Johnson (1993). The Adaptive Decision Maker. Cambridge University Press, New York.Google Scholar
  40. Polydoropoulou, A. (1997). Modeling User Response to Advanced Traveler Information Systems (ATIS). Ph.D. Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.Google Scholar
  41. Prelec, D. (1991). “Values and principles: Some limitations on traditional economic analysis, ” in A. Etzioni & P. Lawrence (eds) Perspectives on Socioeconomics. London: M.E. Sharpe.Google Scholar
  42. Rabin, M. (1998). “Psychology and Economics, ” Journal of Economic Literature, 36, 11–46.Google Scholar
  43. Russell, J. A., Lewicka, M., & Niit, T. (1989). “A cross-cultural study of a circumplex model of affect, ” Journal of Personality and Social Psychology, 57, 848–856.Google Scholar
  44. Schwartz, S. H. (1992). “Universals in the context and structure of values: Theoretical advances and empirical tests in 20 countries. ” In M. Zanna (Ed.), Advances in experimental social psychology, 25, 1–65. Orlando, FL: Academic Press.Google Scholar
  45. Simon, H. (1959) “Theories of Decision-Making in Economics and Behavioral Science, ” American Economic Review, 49, 253–283.Google Scholar
  46. Svenson, O. (1992). “Differentiation and consolidation theory of decision making: a frame of reference for the study of pre-and post-decision processes, ” Acta Psychologica, 80, 143–168.Google Scholar
  47. Svenson, O. (1998). “The perspective from behavioral decision theory on modeling travel choice, ” In T. Gärling, T. Laitila & K. Westin (Eds.). Theoretical foundations of travel choice modeling, 141–172. Amsterdam: Elsevier.Google Scholar
  48. Thaler, R. (1991). Quasi-Rational Economics, Russell Sage Foundation.Google Scholar
  49. Tversky, A.; Kahneman, D. (1974). “Judgment under uncertainty: heuristics and biases, ” Science, v. 185, 1124–1131.Google Scholar
  50. Tversky, A. and D. Kahneman (1992). “Advances in prospect theory: Cumulative representation of uncertainty, ” Journal of Risk and Uncertainty, 5, 297–323.Google Scholar
  51. von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic Behavior, Princeton University Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Moshe Ben-Akiva
    • 1
  • Daniel McFadden
    • 2
  • Tommy Gärling
    • 3
  • Dinesh Gopinath
    • 4
  • Joan Walker
    • 5
  • Denis Bolduc
    • 6
  • Axel Börsch-Supan
    • 7
  • Philippe Delquié
    • 8
  • Oleg Larichev
    • 9
  • Taka Morikawa
    • 10
  • Amalia Polydoropoulou
    • 11
  • Vithala Rao
    • 12
  1. 1.Massachusetts Institute of TechnologyUSA
  2. 2.University of CaliforniaBerkeley
  3. 3.Göteborg UniversitySweden
  4. 4.Mercer Management ConsultingUSA
  5. 5.Massachusetts Institute of TechnologyUSA
  6. 6.Université LavalCanada
  7. 7.Universität MannheimGermany
  8. 8.Insead
  9. 9.Academy of SciencesMoscow
  10. 10.Nagoya UniversityJapan
  11. 11.University of the AegeanGreece
  12. 12.Cornell UniversityUSA

Personalised recommendations