Journal of Paleolimnology

, Volume 23, Issue 1, pp 77–89 | Cite as

Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway

  • Stepehn J. Brooks
  • H.J.B. Birks
Article

Abstract

A chironomid data-set calibrated to July air temperatures, based on 44 lakes in western Norway, is used to reconstruct mean July air temperatures from late-glacial and early-Holocene fossil chironomid assemblages at Kråkenes Lake. The calibration function is based on Weighted Averaging Partial Least Squares regression and has a root mean square error of prediction (RMSEP) of 1.13 °C, a r2 of 0.69, and a maximum bias of 2.66 °C. All these statistics are based on leave-one-out cross-validation. A calibration function based on summer surface-water temperatures has a poorer performance (RMSEP = 2.22 °C, r2 = 0.30, maximum bias = 5.29 °C). The reconstructed July air temperatures at Kråkenes rise to 10.5 °C soon after deglaciation, are about 11.5 °C in the Allerød, decrease to 9.5-10 °C in the Younger Dryas, and rise rapidly within 15 yrs to 11.5 °C at the onset of the Holocene. There is a two-step rise to 13 °C or more in the early-Holocene. The likely over-estimation of Younger Dryas temperatures and under-estimation of early-Holocene temperatures probably result from the limited temperature range represented by the existing calibration set. The data set is currently being expanded to include lakes with warmer air temperatures (> 14 °C) and with colder air temperatures (< 8 °C).

chironomids climate reconstruction calibration Weighted Averaging Partial Least Squares late-glacial Kråenes Younger Dryas Allerød 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aune, B., 1993. Air temperature normals, Normal period 1961––1990. Det norske meterologiske institutt, Oslo, Report 02/93 Klima.Google Scholar
  2. Birks, H. H., 1994. Late-glacial vegetational ecotones and climatic patterns in western Norway. Veg. Hist. Archaeobot. 3: 107–119.Google Scholar
  3. Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolim. 23: 7–19.Google Scholar
  4. Birks, H. H. + 23 others, 1996. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286.Google Scholar
  5. Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene — a synthesis. J. Paleolim. 23: 91–114.Google Scholar
  6. Birks, H. H., Aa. Paus, J. I. Svendsen, T. Alm, J. Mangerud & J. Y. Landvik, 1994. Late Weichselian environmental change in Norway, including Svalbard. J. Quat. Sci. 9: 133–145.Google Scholar
  7. Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5.Google Scholar
  8. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In D. Maddy & J. S. Brew (eds), Statistical modelling of quaternary science data. Technical Guide 5, Quaternary Research Association, Cambridge: 161–254.Google Scholar
  9. Birks, H. J. B., 1998. Numerical tools in quantitative palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332.Google Scholar
  10. Bradshaw, E., V. J. Jones, H. J. B. Birks & H. H. Birks, 2000. Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. J. Paleolim. 23: 21–34.Google Scholar
  11. Brooks, S. J., 1997. The response of Chironomidae (Insecta: Diptera) assemblages to Late-glacial climatic change in Kråkenes Lake, western Norway. Quat. Proc. 5: 49–58.Google Scholar
  12. Brooks, S. J., F. E. Mayle & J. J. Lowe, 1997. Chironomid-based Late-glacial climatic reconstruction for southeast Scotland. J. Quat. Sci. 12: 161–167.Google Scholar
  13. Brooks, S. J., J. J. Lowe & F. E. Mayle, 1998. The Late Devensian Late-glacial palaeoenvironmental record from Whitrig bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308.Google Scholar
  14. Cleveland, W. S., 1993. Visualizing data. Hobart Press, Summit, 360 pp.Google Scholar
  15. Cranston, P. S., 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwater Biological Association, Ambleside, 152 pp.Google Scholar
  16. Crawley, M. J., 1993. GLIM for Ecologists. Blackwell Scientific Publications, Oxford, 379 pp.Google Scholar
  17. Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76.Google Scholar
  18. Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas — Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.Google Scholar
  19. Hann, B. J., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change: a comment on Walker et al. (1991). Can. J. Fish. aquat. Sci. 49: 1274–1276.Google Scholar
  20. Hofmann, W., 1971. Zür Taxonomie und Palä okologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Ergebnisse der Limnologie 6: 1–50.Google Scholar
  21. Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for palaeolimnological research. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 501–509.Google Scholar
  22. Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response models. J. Veg. Sci. 4: 37–46.Google Scholar
  23. Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.Google Scholar
  24. Kowalyk, H. E., 1985. The larval cephalic setae in the Tanypodinae (Diptera: Chironomidae) and their importance in generic determinations. Can. Ent. 117: 67–106.Google Scholar
  25. Laaksonen, K., 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Annals. Acad. Scient. Fenn. A3, 199: 1–19.Google Scholar
  26. Larsen, E., F. Eide, O. Longva & J. Mangerud, 1984. Allerød–Younger Dryas climatic inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arct. Alp. Res. 16: 137–160.Google Scholar
  27. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993a. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.Google Scholar
  28. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993b. The Amphi-Atlantic Oscillation: a proposed late-glacial climatic event. Quat. Sci Rev. 12: 629–643.Google Scholar
  29. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multi-proxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.Google Scholar
  30. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1997. Exceptionally steep north-south gradients in lake temperatures during the last deglaciation. Nature 385: 423–426.Google Scholar
  31. Lindegaard, C., 1997. Diptera Chironomidae, non-biting midges. In A. N. Nilsson (ed.), Aquatic insects of north Europe — a taxonomic handbook. Volume 2. Apollo Books, Stenstrup: 265–294.Google Scholar
  32. Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181–198.Google Scholar
  33. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, Cladocera, chironomids and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  34. Lotter, A. F., I. R. Walker & S. J. Brooks, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.Google Scholar
  35. Moller Pillot, H. K. M., 1984. De larven der Nederlandse Chironomidae (Diptera). Nederlandse Faunistische Mededelingen. 1A: 1–277.Google Scholar
  36. NASP Members, 1994. Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14–9 Ka BP): a contribution to IGCP-253. J. Quat. Sci. 9: 185–198.Google Scholar
  37. Odland, A., 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Paläoklimaforschung 20: 43–59.Google Scholar
  38. Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lake-water and air temperatures from chironomid assemblages in northern Fennoscandia. The Holocene 9: (in press).Google Scholar
  39. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.Google Scholar
  40. Renberg, I., 1991. The HON-Kajak sediment corer. J. Paleolim. 6: 167–170.Google Scholar
  41. Solem, J. O. & H. H. Birks, 2000. Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J. Paleolim. 23: 49–56.Google Scholar
  42. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  43. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  44. ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.Google Scholar
  45. van Dinter, M. & H. H. Birks, 1996. Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: implications for the late-glacial vegetational history of western Norway. Veg. Hist. Archaeobot. 5: 229–240.Google Scholar
  46. Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  47. Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 405–422.Google Scholar
  48. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.Google Scholar
  49. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  50. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scand. Suppl. 19: 1–457.Google Scholar
  51. Wilson, S. E., I. R. Walker, R. J. Mott & J. P. Smol, 1993. Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Climate Dynamics 8: 177–187.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Stepehn J. Brooks
    • 1
  • H.J.B. Birks
    • 2
    • 3
  1. 1.Department of EntomologyNatural History MuseumLondonUK
  2. 2.Botanical InstituteUniversity of BergenBergenNorway
  3. 3.University College LondonLondonUK

Personalised recommendations