Advertisement

Recommendations for the routine sampling of diatoms for water quality assessments in Europe

  • M. G. Kelly
  • A. Cazaubon
  • E. Coring
  • A. Dell'Uomo
  • L. Ector
  • B. Goldsmith
  • H. Guasch
  • J. Hürlimann
  • A. Jarlman
  • B. Kawecka
  • J. Kwandrans
  • R. Laugaste
  • E.-A. Lindstrøm
  • M. Leitao
  • P. Marvan
  • J. Padisák
  • E. Pipp
  • J. Prygiel
  • E. Rott
  • S. Sabater
  • H. van Dam
  • J. Vizinet
Article

Abstract

Many methods for using diatoms for routine monitoring of water quality have been developed in Europe and, in some countries, these are being used to enforce environmental legislation. In order to facilitate their wider use, particularly with respect to European Union legislation, steps are being taken to harmonize methodology. In this paper, the principles and practice of sampling are described in relation to the main habitat types encountered in Europe. Although details of methods and sampling programmes have to be tailored to particular circumstances and the overall objectives of the monitoring, a number of generalizations can be made. Where available, rocks and other hard surfaces are the preferred substrates and methods for sampling these are described. If such substrata are not available, then introduced ('artificial') substrata have many applications. Various types of introduced substrata can be used successfully, so long as some basic precautions are described. Other types of substrata such as macrophytes and macroalgae may also be useful under certain circumstances, although there is less consensus in the literature on the most appropriate methods, and of the validity of comparisons between indices computed from epiphytic and epilithic communities. When designing surveys, it is recommended that as far as possible, extremes of non-water quality factors (e.g. shade, current speed, etc) are avoided, unless these are characteristic of the system under investigation. Detailed guidelines for sampling epilithon are described. Along with the recommendations for sampling other substrata, it is hoped that these provide a framework that can be adapted to most river types in Europe.

diatoms Bacillariophyta periphyton monitoring sampling rivers water quality 

References

  1. Antoine SE, Benson-Evans K (1982) The effect of current velocity on the rate of growth of benthic algal communities. Int. Revue ges. Hydrobiol. 67: 575–583.Google Scholar
  2. Bowburn Consultancy (1996) The Trophic Diatom Index: A User's Manual. R&D Technical Report E2. Environment Agency, Bristol. 148 pp.Google Scholar
  3. Butcher RW (1932) Studies in the ecology of rivers. II. The microflora of rivers with special reference to the algae on the river bed. Ann. Bot. 46: 813–861.Google Scholar
  4. Cairns J, Jr, Smith EP (1994) The statistical validity of biomonitoring data. In: Loeb SL, Spacie A (eds) Biological Monitoring of Aquatic Systems. Lewis Publishers, Boca Raton, 49–68.Google Scholar
  5. Cameron NG (1995) The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolimnol. 14: 185–223.CrossRefGoogle Scholar
  6. Cattaneo A, Amireault MC (1992) How artificial are artificial substrata for periphyton? J. N. Am. benthol. Soc. 11: 244–256.CrossRefGoogle Scholar
  7. Cazaubon A (1988) Rôle du courant sur la microdistribution des diatomées épilithiques dans une rivière méditerranéenne, l'Argens (Var, Provence). Proceedings of the 9th Diatom Symposium. Biopress, Bristol, 93–107.Google Scholar
  8. Cazaubon A (1989) La florule épiphyte-principalement diatomiquede diverses plantes-hôtes à la source d'une rivière méditerranéenne (l'Argens, sud-est de la France). Cryptogamie, Algol. 10: 195–207.Google Scholar
  9. Cazaubon A, Loudiki M (1986) Microrépartition des algues épilithiques sur les cailloux d'un torrent Corse, le Rizzanèse. Ann. Limnol. 22: 3–16.CrossRefGoogle Scholar
  10. Cazaubon A, Rolland T, Loudiki, M (1995) Heterogeneity of periphyton in French Mediterranean rivers. Hydrobiologia 300/301: 105–114.CrossRefGoogle Scholar
  11. CEMAGREF (1982) Etude des méthodes biologiques d'appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon-A.F. Bassin Rhône-Mediterrannée-Corse. 218 pp.Google Scholar
  12. Coring E (1993) Zum Indikationswert benthischer Diatomeengesellschaften in basenarmen Fliesgewässern. Reihe Biologie, Verlag Shaker, Aachen. 165 pp.Google Scholar
  13. Coste M (1997) Sur l'utilisation des diatomées dans le diagnostic biologique de la qualité des cours d'eau – intérêt et limites des indices. In Etat de Santé des Écosystèmes Aquatiques. Les Variables Biologiques comme Indicateurs. Actes du Séminaire National Hydrosystèmes, Paris 2–3 Novembre 1984. CEMAGREF éditions, 171–194.Google Scholar
  14. Cox EJ (1984) Observations on some benthic diatoms from North German lakes: the effect of substratum and light regime. Verh. int. Ver. Limnol. 22: 924–928.Google Scholar
  15. Dell' Uomo A (1996) Assessment of water quality of an Apennine river as a pilot study for diatom-based monitoring of Italian watercourses. In Whitton BA, Rott E (eds), Use of Algae for Monitoring Rivers II. Universität Innsbruck, Innsbruck, 65–72.Google Scholar
  16. Descy JP (1976) Un appareillage pratique pour l'échantillonnage quantitatif du périphyton épilithique. Bull. Soc. r. Bot., Belg. 109: 43–47.Google Scholar
  17. Douglas B (1958) The ecology of the attached diatoms and other algae in a small stony stream. J. Ecol. 46: 295–322.CrossRefGoogle Scholar
  18. Elber F, Hürlimann J, Niederberger K (1992) Beurteilung der Gewässergüte und der Ökomorphologie in der Aare. Aquaplus, Wollerau.Google Scholar
  19. Eloranta P, Andersson K (1997) Diatom indices in water quality monitoring of some South-Finnish rivers Verh. int. Ver. Limnol. (in press)Google Scholar
  20. Eloranta P, Kwandrans J (1996) Testing the use of diatoms and macroalgae for river monitoring in Finland. In Whitton BA, Rott E (eds), Use of Algae for Monitoring Rivers II Universität Innsbruck, Innsbruck, 119–124.Google Scholar
  21. Flower RJ (1985) An improved epilithon sampler and its evaluation in two acid lakes. Br. phycol. J. 20: 109–115.Google Scholar
  22. Goldsmith B (1997) A rationale for the use of artificial substrates to enhance diatom-based monitoring of eutrophication in lowland rivers. Working Paper No. 14, Environmental Change Research Centre, University College, London. 8 pp.Google Scholar
  23. Guasch H, Muñoz I, Rosés N, Sabater S (1997) Changes in atrazine toxicity throughout succession of stream periphyton communities. J. appl. Phycol. 9: 137–146.CrossRefGoogle Scholar
  24. Guasch H, Sabater S (1995) Seasonal variations in photosynthesis-irradiance responses by biofilms in Mediterranean streams. J. Phycol. 31: 727–735.CrossRefGoogle Scholar
  25. Harding JPC, Kelly MG (1998) Recent developments in the use of algae to monitor rivers in the U.K. In Prygiel J, Whitton BA, Bukowska J. (eds), Use of Algae to Monitor Rivers – III. Agence de l'Eau Artois-Picardie, Douai. (in press)Google Scholar
  26. Hofmann G (1994) Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30. J. Cramer, Berlin, Stuttgart. 241 pp.Google Scholar
  27. Hürlimann J, Elber F, Niederberger K (1998) Use of algae for monitoring rivers: an overview of the current situation and recent developments in Switzerland. In Prygiel J, Whitton BA, Bukowska J. (eds), Use of Algae to Monitor Rivers – III. Agence de l'eau Artois-Picardie, Douai, France. (in press)Google Scholar
  28. Hürlimann J, Schanz F (1993) The effects of artificial ammonium enhancement on riverine periphytic diatom communities. Aquat. Sci. 55: 40–64.CrossRefGoogle Scholar
  29. Iserentant R, Blancke D (1986) A transplantation experiment in running water to measure the response rate of diatoms to changes in water quality. In Ricard M (ed.), Proc. 8th Int. Diatom Symposium (Paris 1984), Koeltz Scientific Books, Koenigstein, 347–354.Google Scholar
  30. Iserentant R, Versailles A (1989) A comparison between artificial and natural substrates for estimation of water quality indices from diatom communities analysis. In Bohác J, Ruzicka V (eds), Proc. Vth Int. Conf. Bioindicatores Deteriorisationis Regionis. Institute of Landscape Ecology CAS, Ceske Budejovice, 262–268.Google Scholar
  31. Kawecka B (1985) Ecological characteristics of sessile algal communities in the Olczyski stream (Tatra Mts, Poland) with special consideration of light and temperature. Acta Hydrobiol. 27: 299–310.Google Scholar
  32. Kawecka B (1986) The effect of light deficiency on communities of sessile algae in the Olczyski stream (Tatra Mts, Poland). Acta Hydrobiol. 28: 379–386.Google Scholar
  33. Kelly MG (1998) Use of the trophic diatom index to monitor eutrophication in rivers. Wat. Res. 32: 236–242.CrossRefGoogle Scholar
  34. Kelly MG, Penny CJ, Whitton BA (1995) Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302: 179–188.Google Scholar
  35. Kelly, MG, Whitton BA, Lewis A (1996) Use of diatoms to monitor eutrophication in U.K. rivers. In Whitton BA, Rott E (eds), Use of Algae for Monitoring Rivers – 2. Universität Innsbruck, Innsbruck, 79–86.Google Scholar
  36. Lay JA, Ward AK (1987) Algal community dynamics in two streams associated with different geological regions in the southeastern United States. Arch. Hydrobiol. 108: 305–324.Google Scholar
  37. Lenoir A, Coste M (1994) Estimation de la Qualité des Eaux du Bassin Rhin-Meuse à l'aide des Communautés de Diatomées Benthiques. Rapport Cemagref de Bordeaux, mars 1994. Agence de l'Eau Rhin-Meuse, Moulins-les-Metz, France. 169 pp.Google Scholar
  38. Lindstrøm E-A, Traaen TS (1984) Influence of current velocity on periphyton distribution and succession in a Norwegian soft water river. Verh. int. Ver. Limnol. 22: 1965–1972.Google Scholar
  39. Maier M (1994) Die jahreszeitliche Veränderung der Kieselalgengemeinschaft in zwei geologisch unterschiedlichen Fliessgewässern der Alpen und ihre Verteilung auf verschiedenen Substraten. Diatom Research 9: 121–131.Google Scholar
  40. Padisák J (1982) The periphyton of Lake Ferto: species composition and chlorophyll-a-content. BFB-Bericht 43: 95–115.Google Scholar
  41. Padisák J (1998). The Phytoplankton. In O'Sullivan P, Reynolds CS (eds), The Lakes Handbook. Blackwell Science Ltd, Oxford. (in press)Google Scholar
  42. Patrick R, Hohn MH, Wallace JH (1954) A new method for determining the pattern of the diatom flora. Not. Nat. (Phila.) 259: 1–12.Google Scholar
  43. Pipp E, Rott E (1993) Bestimmung der ökologischen Wertigkeit von Flieβgewässern in Österreich nach dem Algenaufwuchs. Blaue Reihe des Bundesministeriums für Umwelt, Jugend und Familie 2, Wien. 147 pp.Google Scholar
  44. Porter SD, Cuffney TF, Gurtz ME, Meador MR (1993) Methods for collecting algal samples as part of the National Water-Quality Assessment Program. Open-File Report 93–409, U.S. Geological survey, Raleigh, NC. 39 pp.Google Scholar
  45. Prygiel J, Coste M (1993) Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: bilan et perspectives. Ann. Limnol. 29: 255–267.CrossRefGoogle Scholar
  46. Prygiel J, Coste M (1998) Progress in the use of diatoms for monitoring rivers in France. In Prygiel J, Whitton BA, Bukowska J (eds), Use of Algae for Monitoring Rivers – III. Agence de l'Eau Artois-Picardie, Douai, France. (in press)Google Scholar
  47. Reiger HA (1992) Ecosystem integrity in the Great Lakes Basin: an historical sketch of ideas and actions. Journal of Aquatic Ecosystem Health 1: 25–37.CrossRefGoogle Scholar
  48. Rolland T, Fayolle S, Cazaubon A, Pagnetti S (1997) Methodical approach to distribution of epilithic and drifting algae communities in a French subalpine river: inferences on water quality assessment. Aquat. Sci. 59: 57–73.CrossRefGoogle Scholar
  49. Rott E, Pipp E (1998) Progress in Austrian periphyton investigations. In Prygiel J, Whitton BA, Bukowska J (eds), Use of Algae to Monitor Rivers – III. Agence de l'eau Artois-Picardie, Douai. (in press)Google Scholar
  50. Round FE (1991) Use of diatoms for monitoring rivers. In Whitton BA, Rott E, Friedrich G (eds), Use of Algae for Monitoring Rivers. Universität Innsbruck, Innsbruck, 25–32.Google Scholar
  51. Round FE (1993) A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality 1993. 65 pp. Methods for the Examination of Waters and Associated Materials. Her Majesty's Stationary Office, London.Google Scholar
  52. Round FE, Bukhtiyarova L (1996) Epipsammic diatoms – communities of British rivers. Diatom Research 11: 363–372.Google Scholar
  53. Rumeau A, Coste M (1988) Initiation à la systématique des diatomées d'eau douce. Pour l'utilisation pratique d'un indice diatomique générique. Bull. Fr. Pêche Piscic. 309: 1–69.CrossRefGoogle Scholar
  54. Salden N (1978) Beiträge zur Ökologie der Diatomeen (Bacillariophyceae) des Süβwassers. Decheniana Beih. 22: 238 pp.Google Scholar
  55. Snoeijs P, Simenstad P (1995) The use of algae in monitoring discharges of radionuclides – experiences from the 1992 and 1993 monitoring programmes at the Swedish nuclear power plants. Swedish Radiation Protection Institute Report 95–03. 42 pp.Google Scholar
  56. Stevenson RJ (1990) Benthic algal community dynamics in a stream during and after a spate. J. N. Am. Benthol. Soc. 9: 277–288.CrossRefGoogle Scholar
  57. van Dam H, Mertens A (1993) Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia 269/270: 473–445.CrossRefGoogle Scholar
  58. Vizinet J (1995) Impact d'une pollution chimiquement definie sur les populations de diatomees en rivière. Mémoire de D.E.A., Univ. P. & M. Curie, 18 p. + ann.Google Scholar
  59. Wendker S (1992) Influence of current velocity on diatoms of a small softwater stream. Diatom Research 7: 387–396.Google Scholar
  60. Whitton BA, Rott E (1996) Use of Algae for Monitoring Rivers II. Proceedings of the 2nd European Workshop, Innsbruck, 1995. Universität Innsbruck, Innsbruck. 196 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. G. Kelly
    • 1
  • A. Cazaubon
    • 2
  • E. Coring
    • 3
  • A. Dell'Uomo
    • 4
  • L. Ector
    • 5
  • B. Goldsmith
    • 6
  • H. Guasch
    • 7
  • J. Hürlimann
    • 8
  • A. Jarlman
    • 9
  • B. Kawecka
    • 10
  • J. Kwandrans
    • 10
  • R. Laugaste
    • 11
  • E.-A. Lindstrøm
    • 12
  • M. Leitao
    • 13
  • P. Marvan
    • 14
  • J. Padisák
    • 15
  • E. Pipp
    • 16
  • J. Prygiel
    • 17
  • E. Rott
    • 16
  • S. Sabater
    • 7
  • H. van Dam
    • 18
  • J. Vizinet
    • 19
  1. 1.Bowburn ConsultancyBowburn, DurhamU.K
  2. 2.Faculté des Sciences et Techniques de St. JerômeUniversité Aix-Marseille 3Marseille Cedex 20France
  3. 3.Bayerisches Landesamt für WasserwirtschaftInstitut für WasserforschungWielenbachGermany
  4. 4.Dipartimento di Botanica ed EcologiaUniversità di CamerinoCamerino (MC)Italy
  5. 5.Centre de Recherche en Environnement et BiotechnologiesCentre de Recherche Public – Centre UniversitaireLuxembourgGrand Duchy of Luxembourg
  6. 6.Environmental Change Research CentreUniversity College, LondonLondonU.K
  7. 7.Department of EcologyUniv. de BarcelonaBarcelona, pSpain
  8. 8.AquaPlus, Gewerbestrasse 5aUnterägeriSwitzerland
  9. 9.KM LabLundSweden
  10. 10.Institute of Freshwater BiologyPolish Academy of SciencesKrakowPoland
  11. 11.TartumaaEstonia
  12. 12.NIVAOsloNorway
  13. 13.Bi-EauAngersFrance
  14. 14.Institute of BotanyCzech Academy of SciencesBrnoCzech Republic
  15. 15.Balatoni Limnologiai KutatoinezeteTihanyHungary
  16. 16.Arbeitsgruppe Hydrobotanik,Institut für BotanikInnsbruckAustria
  17. 17.Mission Ecologie du MilieuAgence de l'Eau Artois-PicardieDouai CedexFrance
  18. 18.AquaSense TECWageningenThe Netherlands
  19. 19.Laboratoire d'Hydrologie et Géochimie IsotopiqueUniversité de Paris SudOrsay CedexFrance

Personalised recommendations