Journal of Applied Phycology

, Volume 10, Issue 4, pp 377–382 | Cite as

Dual sparging laboratory-scale photobioreactor for continuous production of microalgae

  • Niels T. Eriksen
  • Bjarne R. Poulsen
  • J. J. Lønsmann Iversen


A description is given of a reliable 1.7-L photobioreactor with a minimum maintenance requirement for continuous production of photosynthetic microorganisms. The reactor is without moving parts and equipped with two different spargers operated in dual sparging mode: sufficient mixing to keep the cells in suspension is obtained by sparging with air through two single orifice spargers which deliver large bubbles, and pure CO2 is supplied, controlled by pH, through a perforated membrane sparger which delivers small bubbles that give an efficient mass transfer of CO2 from gas to liquid. Separation of CO2 supply from air for mixing by dual sparging increased the transfer of CO2 from gas phase to liquid phase five fold relative to conventional sparging. The photoautotrophic microalga Rhodomonas sp. has been produced continuously for up to 415 d with a dilution rate of 0.6 d-1 and a steady state cell number of 107 cells mL-1. The productivity of Rhodomonas culture in the dual sparging photobioreactor was identical to the productivity of cultures grown with mechanical mixing.

photobioreactor continuous algal CO2 transfer efficiency membrane dual sparging Rhodomonas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clausen I, Riisgård HU (1996) Growth, filtration and respiration in the mussel Mytilus edulis:no regulation of the filter-pump to nutritional needs. Mar. Ecol. Progr. Ser. 141: 37-45.Google Scholar
  2. Eriksen NT, Iversen JJL (1995a) On-line determination of pigment composition and biomass in cultures of microalgae. Biotechnol. Techn. 9: 49-54.CrossRefGoogle Scholar
  3. Eriksen NT, Geest T, Iversen JJL (1996) Phototrophic growth in the lumostat: a photo-bioreactor with on-line optimization of light intensity. J. appl. Phycol. 8: 345-352.CrossRefGoogle Scholar
  4. Eriksen NT, Iversen JJL (1995) Photosynthetic pigments as nitrogen stores in the cryptophyte alga Rhodomonassp. J. mar. Biotechnol. 3: 193-195.Google Scholar
  5. Eriksen NT, Iversen JJL (1997) On-line determination of respiration rates of aquatic organisms in a mono-phase oxystat at steady-state dissolved oxygen tension. Mar. Biol. 128: 181-189.CrossRefGoogle Scholar
  6. Gudin C, Chaumont D (1991) Cell fragility - the key problem of microalgae mass production in closed photobioreactors. Biores. Technol. 38: 145-151.CrossRefGoogle Scholar
  7. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds), Culture of Marine Invertebrate Animals. Plenum Press, New York: 29-60.Google Scholar
  8. Iversen JJL (1981) A rapid sampling valve with minimal dead space for laboratory scale fermenters. Biotechnol. Bioengng 23: 437-440.CrossRefGoogle Scholar
  9. Martinez-Jeronimo F, Espinosa-Cháves F (1994) A laboratory-scale system formass culture of freshwater microalgae in polyethylene bags. J. appl. Phycol. 6: 423-425.CrossRefGoogle Scholar
  10. Molina Grima EM, Camacho FG, Pérez JAS, Sevilla JMF, Fernández FGA, Gómez AC (1994) A mathematical model of microalgal growth in light-limited chemostat culture. J. Chem. Tech. Biotechnol. 61: 167-173.CrossRefGoogle Scholar
  11. Nielsen AM, Eriksen NT, Iversen JJL, Riisgård HU (1995) Feeding, growth and respiration in the polychaetes Nereis diversicolor(facultative filter-feeder) and N. virens(omnivorous) - a comparative study. Mar. Ecol. Progr. Ser. 125: 149-158.Google Scholar
  12. Petersen JK, Riisgård HU (1992) Filtration capacity of the ascidian Ciona intestinalisand its grazing impact in a shallow fjord. Mar. Ecol. Progr. Ser. 88: 9-17.Google Scholar
  13. Petersen JK, Schou O, Thor P (1995) Growth and energetics in the ascidian Ciona intestinalis. Mar. Ecol. Progr. Ser. 120: 175-184.Google Scholar
  14. Poulsen BR, Iversen JJL (1998) Characterization of gas transfer and mixing in a bubble column equipped with a rubber membrane diffuser. Biotechnol. Bioengng 58: 633-641.CrossRefGoogle Scholar
  15. Riisgård HU (1991) Filtration rate and growth in the blue mussel, Mytilus edulisLinneaus, 1758: dependence on algal concentration. J. Shellfish. Res. 10: 29-35.Google Scholar
  16. Riisgård HU, Vedel A, Boye H, Larsen PS (1992) Filter-net structure and pumping activity in the polychaete Nereis diversicolor:effects of temperature and pump-modelling. Mar. Ecol. Progr. Ser. 83: 79-89.Google Scholar
  17. Riisgård HU, Thomassen S, Jakobsen H, Weeks J, Larsen PS (1993) Suspension feeding in marine sponges Halichondria paniceaand Haliclona urceolus: effect of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Progr. Ser. 96: 177-188.Google Scholar
  18. Silva HJ, Cortiñas T, Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliellagrowth. J. Chem. Tech. Biotechnol. 40: 41-49.Google Scholar
  19. van Liere L, Walsby AE (1982) Interactions of cyanobacteria with light. In: Carr NG, Whitton BA (eds), The Biology of Cyanobacteria. Blackwell, Oxford: 9-45.Google Scholar
  20. Vedel A, Riisgård HU (1993) Filter-feeding in the polychaete Nereis diversicolor: growth and bioenergetics. Mar. Ecol. Progr. Ser. 100: 145-152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Niels T. Eriksen
    • 1
  • Bjarne R. Poulsen
    • 1
  • J. J. Lønsmann Iversen
    • 1
  1. 1.Institute of BiochemistryOdense UniversityOdense MDenmark

Personalised recommendations