European Journal of Plant Pathology

, Volume 104, Issue 4, pp 413–423 | Cite as

Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials

  • A.J. Dik
  • M.A. Verhaar
  • R.R. Bélanger


The effect of three reported biological control agents, Ampelomyces quisqualis, Verticillium lecanii and Sporothrix flocculosa, was tested against cucumber powdery mildew (Sphaerotheca fuliginea). Two glasshouse experiments, one in the summer and one in winter/spring were conducted on a semi-commercial scale. In both experiments, a susceptible and a partially resistant cultivar were used. In the second experiment, the additional effect of integration of biological control and silicon amendments to the nutrient solution was also assessed. In both experiments, A. quisqualis did not control the disease. V. lecanii had a small effect on powdery mildew in the first experiment but not in the second. S. flocculosa gave the best control of powdery mildew in both experiments. In the first experiment, weekly application of S. flocculosa reduced disease in the partially resistant cultivar to the same level as a treatment in which the fungicides bupirimate and imazalil were each applied once. Addition of silicon in the nutrient solution in a concentration of 0.75 mM reduced disease by 10–16%, averaged over all treatments. There was no interaction between silicon and the biocontrol agents. Yield was recorded in the second experiment and was significantly increased by the fungicide treatment compared to the control in the partially resistant cultivar. Yield in the treatment with S. flocculosa was not significantly different from the fungicide treatment in this cultivar. Silicon had no effect on yield in either cultivar.

Ampelomyces quisqualis cucurbits silicon Sporothrix flocculosa Verticillium lecanii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adatia MH and Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58: 343-351Google Scholar
  2. Askary H, Benhamou N and Brodeur J (1997) Ultrastructural and cytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology 87: 359-368Google Scholar
  3. Bélanger RR, Labbé C and Jarvis WR (1994) Commercial-scale control of rose powdery mildew with a fungal antagonist. Plant Dis. 78: 420-424Google Scholar
  4. Benyagoub M, Willemot C and Bélanger RR (1996) Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on celllular lipid composition in fungi. Lipids 31: 1077-1082PubMedGoogle Scholar
  5. Boekhout T (1995) Pseudozyma bandoni Emend. Boekhout, a genus for yeast-like anamorphs of Ustiliginales. J. Gen. Appl. Micorbiol. 41: 359-366Google Scholar
  6. Choudhury SR, Traquair JA and Jarvis WR (1994) 4-Methyl-7,11-heptadecadienal and 4-methyl-7,11-heptadecadienoic acid: new antibiotics from Sporothrix flocculosa and Sporothrix rugulosa. J. Nat. Prod. 57: 700-704PubMedGoogle Scholar
  7. Elad Y, Malathrakis NE and Dik AJ (1996) Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops. Crop Prot. 15: 229-240CrossRefGoogle Scholar
  8. Genstat 5 Committee (1992) Genstat 5 Release 3 Reference Manual. Oxford University Press, Oxford, UK. 796 ppGoogle Scholar
  9. Hajlaoui MR and Bélanger RR (1991) Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Neth. J. PL. Path. 97: 203-208Google Scholar
  10. Hajlaoui MR, Benhamou N and Bélanger RR (1992) Cytochemical study of the antagonistic activity of Sporothrix flocculosa on rose powdery mildew, Sphaerotheca pannosa var. rosae. Phytopathology 82: 583-589Google Scholar
  11. Hashioka Y and Nakai Y (1980) Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Trans. Mycol. Soc. Japan 21: 329-338Google Scholar
  12. Hijwegen T (1992) Biological control of cucumber powdery mildew with Tilletiopsis minor under greenhouse conditions. Neth. J. Pl. Path. 98: 221-225Google Scholar
  13. Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, St. Paul, MN, USA. 288 ppGoogle Scholar
  14. Jarvis WR and Slingsby K (1977) The control of powdery mildew of greenhouse cucumber by water sprays and Ampelomyces quisqualis. Plant Dis. Rep. 61: 728-730Google Scholar
  15. Jarvis WR, Shaw LA and Traquair JA (1989) Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and S. rugulosus. Mycol. Res. 92: 162-165Google Scholar
  16. Menzies JG and Bélanger RR (1996) Recent advances in cultural management of diseases of greenhouse crops. Can. J. Plant Pathol. 18: 186-193Google Scholar
  17. Menzies JG, Ehret DL, Glass ADM, Helmer T, Koch C and Seywerd F (1991) Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus. Phytopathology 81: 84-88Google Scholar
  18. Philipp WD and Crüger G (1979). Parasitismus von Ampelomyces quisqualis auf echten Mehltaupilzen an Gurken und anderen Gemusearten. Z. Pflanzenkr. Pflanzenschutz 86: 129-142Google Scholar
  19. Philipp WD, Beuther E and Grossman F (1982) Untersuchungen über den Einfluss von Fungiziden auf Ampelomyces quisqualis im Hinblick auf eine integrierte Bekämpfung von Gurkenmehltau unter Glas. Z. Pflanzenkr. Pflanzenschutz 89: 575-581Google Scholar
  20. Philipp WD, Grauer U and Grossman F (1984) Ergänzende Untersuchungen zur biologischen und integrierten Bekämpfung von Gurkenmehltau unter Glas durch Ampelomyces quisqualis. Z. Pflanzenkr. Pflanzenschutz 91: 438-443Google Scholar
  21. Philipp WD and Hellstern A (1986) Biologische Mehltaubekämpfung mit Ampelomyces quisqualis bei reduzierter Luftfeuchtigkeit. Z. Pflanzenkr. Pflanzenschutz 93: 384-391Google Scholar
  22. Philipp WD, Beuther E, Hermann D, Klinkert F, Oberwalder C, Schmidtke M and Straub B (1990) Zur Formulierung des Mehltauparasiten Ampelomyces quisqualis Ces.. Z. Pflanzenkr. Pflanzenschutz 97: 120-132Google Scholar
  23. Snedecor GW and Cochran WG (1980) Statistical Methods. The Iowa State University Press, Iowa, U. S. A.Google Scholar
  24. Spencer DM and Ebben MH (1983) Biological control of cucumber powdery mildew. Ann. Rep. Glasshouse Crops Research Institute 1981, Littlehampton, pp. 128-129Google Scholar
  25. Sundheim L (1982) Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathol. 31: 209-214Google Scholar
  26. Sundheim L and Tronsmo A (1988) Hyperparasites in biological control. In: Mukerji KG and Garg KL (Eds.), Biocontrol of Plant Diseases. Vol I. CRC Press, Boca Raton, Florida, pp. 53-69Google Scholar
  27. Sztejnberg A, Galper S, Mazar S and Lisker N (1989) Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. J. Phytopathol. 124: 285-295Google Scholar
  28. Urquhart EJ, Menzies JG and Punja ZK (1994) Growth and biological control activity of Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84: 341-351Google Scholar
  29. Verhaar MA, van Strien PAC and Hijwegen T (1993) Biological control of cucumber powdery mildew (Sphaerotheca fuliginea) by Verticillium lecanii and Sporothrix cf. flocculosa. IOBC/WPRS Bulletin 16: 79-81Google Scholar
  30. Verhaar MA, Hijwegen T and Zadoks JC (1996) Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites Verticillium lecanii and Sporothrix rugulosa. Biol. Control 6: 353-360CrossRefGoogle Scholar
  31. Walinga I, van Vark W, Houba VJG and van der Lee JJ (1989) Plant analysis procedures. Soil and Plant Analysis Syllabi Series, Wageningen Agricultural University, Wageningen, The Netherlands, Part 7Google Scholar
  32. Yarwood CE (1932) Ampelomyces quisqualis on clover mildew. Phytopathology 22: 31Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A.J. Dik
    • 1
  • M.A. Verhaar
    • 2
  • R.R. Bélanger
    • 3
  1. 1.Research Station for Floriculture and Glasshouse VegetablesNaaldwijkThe Netherlands
  2. 2.Department of PhytopathologyWageningen Agricultural UniversityWageningenThe Netherlands
  3. 3.Département de Phytologie-FSAAUniversitéLaval, QuebecCanada

Personalised recommendations