Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance

  • C.J. Dawes
  • J. Orduña-rojas
  • D. Robledo


The agarophyte Gracilaria cornea, collected over 2.5 y in the Florida Keys, shows adaptations to oceanic salinities and subtropical to tropical water temperatures in its photosynthetic and respiratory responses as measured with a respirometer. No seasonal pattern in responses to irradiance, temperature, and salinity were evident between five collections over a 20-month period, indicating the tropical nature of the populations from Bahia Honda and Pigeon Keys. Concentrations of chlorophyll a (0.09 to 0.41 mg g d wt-1) and phycoerythrin (0.06 to 0.36 mg g d wt- 1) were low and reflect the low nutrient regime of the habitats, especially when compared to laboratory cultured plants. Compensation and saturation irradiances were also low (11–38 and 90–127 μmol photon m-2 s-1), indicating acclimation to lower irradiances in their shallow (1–2 m depth) habitats where turbidity can be high. In comparison with other subtropical and warm temperate species of Gracilaria, G. cornea had lower levels of pigment, but similarly high photosynthetic efficiency, demonstrating shade adaptation; it had only limited tolerance to salinities below 20‰ and temperatures below 15 °C. Thus, G. cornea from the Florida Keys in mariculture would require subtropical to tropical temperatures and stable oceanic salinities.

Gracilaria cornea photosynthesis respiration chlorophyll phycoerythrin Florida salinity temperature irradiance 


  1. Abbott IA (1995) A decade of species of Gracilaria (sensu latu).In: Abbott IA (ed.), Taxonomy of Economic Seaweeds. Vol. V. California Seagrant Publication, California Seagrant College, University of California, La Jolla CA: 185-196.Google Scholar
  2. Areces AJ, Araujo M (1996) Influencia de la salinidad y la temperature sobre el crecimiento de Bryothamnion triquetrum(Rhodophyta: Rhodomelaceae). Revue Biologia Tropica 44: 449-454.Google Scholar
  3. Baghadahli D, Tremblin G, Pellegrini M, Coudret A (1990) Effects of environmental parameters on net photosynthesis of a free-living brown seaweed, Cystoseira barbataforma repens:Determination of optimal photosynthetic culture conditions. J. appl. Phycol. 2: 281-287.CrossRefGoogle Scholar
  4. Bird CJ (1995) A review of recent taxonomic concepts and developments in the Gracilariaceae (Rhodophyta). J. appl. Phycol. 7: 255-267.CrossRefGoogle Scholar
  5. Croley FC, Dawes CJ (1970) Ecology of the algae of a Florida Key. A preliminary checklist, zonation, and seasonality. Bull. mar. Sci. 20: 165-185.Google Scholar
  6. Dawes CJ (1974) Marine Algae of the West Coast of Florida. University of Miami Press, Coral Gables, FL.Google Scholar
  7. Dawes CJ (1979) Physiological and biochemical comparisons of Eucheumaspp. (Florideophyceae) yielding iota-carrageenan. Proc. Int. Seaweed Symp. 9: 199-208.Google Scholar
  8. Dawes CJ (1985) Respirometry and manometry. pp. 329-348. In: Litter MM, Littler DS (eds) Handbook of Phycological Methods. Ecological Methods: Macroalgae. Cambridge University Press, Cambridge.Google Scholar
  9. Dawes CJ (1994) Physiological differentiation of the red seaweed Gracilaria tikvahiaefrom a mangal estuary, exposed coast, and culture. Bull. mar. Sci. 54: 361-366.Google Scholar
  10. Dawes CJ (1998) Marine Botany. 2nd edition. J.Wiley & Sons, New York, 480 pp.Google Scholar
  11. Dawes CJ, Koch EW (1988) Physiological acclimation of the Caribbean seaweeds Eucheuma isiformeand Solieria filiformis(Rhodophyta, Gigartinales) in culture. Caribbean J. Sci. 24: 89-94.Google Scholar
  12. Dawes CJ, Koch EW (1991) Branch, micropropagule and tissue culture of the red algae Eucheuma denticulatumand Kappaphycus alvareziifarmed in the Philippines. J. appl. Phycol. 3: 247-258.CrossRefGoogle Scholar
  13. Dawes CJ, Kovach CW (1992) Ecology of the algae of a Florida Key II. Effects of irradiance, salinity and desiccation on intertidal and subtidal populations of seven macroalgae. Bull. mar. Sci. 50: 165-170.Google Scholar
  14. Dawes CJ, Moon RE, Davis MA (1978) Photosynthetic and respiratory rates and tolerances of benthic algae from a mangrove and salt marsh estuary: A comparative study. Estuar. Coast. mar. Sci. 6: 175-185.CrossRefGoogle Scholar
  15. Dawes CJ, Moon RE, LaClaire J (1976) Photosynthetic responses of the red alga, Hypnea musciformis(Wulfen) Lamouroux (Gigartinales). Bull. mar. Sci. 26: 467-473.Google Scholar
  16. Durako MJ, Dawes CJ (1980) A comparative seasonal study of two populations of Hypnea musciformisfrom the east and west coasts of Florida, USA. II. Photosynthesic and respiratory rates. Mar. Biol. 59: 157-162.CrossRefGoogle Scholar
  17. FAO (1993) Aquaculture Production 1985-1991. FAO Fisheries Circular 815, Review 5. FAO, Rome, Italy.Google Scholar
  18. Feile-Pelegrin Y, Robledo D (1997) Effects of season on the agar content and chemical characteristics of Gracilaria corneafrom Yucatan, Mexico. Bot. mar. 40: 285-290.CrossRefGoogle Scholar
  19. Friedlander M, Dawes CJ (1984) Studies on spore release and sporeling growth from carpospores of Gracilaria foliifera(Forsskal) Borgesen var. angustissima(Harvey) Taylor. II Photosynthetic and respiratory responses. Aquat. Bot. 19: 233-241.CrossRefGoogle Scholar
  20. Friedlander M, Levy I (1995) Cultivation of Gracilariain outdoor tanks and ponds. J. appl. Phycol. 7: 315-324.CrossRefGoogle Scholar
  21. Haglund K, Pedersen M (1993) Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitatain brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J. appl. Phycol. 5: 271-284.CrossRefGoogle Scholar
  22. Hurtado-Ponce AQ, Samonte GPB, Luhan MR, Gauanzon N, Jr (1992) Gracilaria(Rhodophyta) farming in Panay, Western Visayas, Philippines. Aquaculture 105: 233-240.CrossRefGoogle Scholar
  23. Jensen A (1993) Present and future needs of algae and algal products. Hydrobiologia 260/262: 15-23.CrossRefGoogle Scholar
  24. Lapointe BE, Duke CS (1984) Biochemical strategies for growth on Gracilaria tikvahiae.(Rhodophyta) in relation to light intensity and nitrogen availability. J. Phycol. 20: 488-495.CrossRefGoogle Scholar
  25. Lapointe BE, Tenore KR, Dawes CJ (1984) Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae(Gigartinales: Rhodophyta). Mar. Biol. 80: 161-170.CrossRefGoogle Scholar
  26. Littler MM, Littler DS, Lapointe BE (1988) A comparison of nutrient-and light-limited photosynthesis in pasmmophytic versus epilithic forms of Halimeda(Caulerpales, Halimedaceae) from the Bahamas. Coral Reefs 6: 219-225.CrossRefGoogle Scholar
  27. Mathieson AC, Dawes CJ (1986) Photosynthetic responses of Florida seaweeds to light and temperature: A physiological survey. Bull. mar. Sci. 38: 512-524.Google Scholar
  28. McHugh DJ (1991) Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221: 19-29.CrossRefGoogle Scholar
  29. Norris JN (1985) Gracilariaand Polycavernosafrom the Caribbean and Florida: Key and list of the species of economic potential. pp. 101-114. In: Abbott IA, Norris JN (eds), Taxonomy of Economic Seaweeds. California Seagrant Publication, California Seagrant College, University of California, La Jolla.Google Scholar
  30. O'Neal SW, Prince JS (1988) Seasonal effects of light, temperature, and nutrient concentration and salinity on the physiology and growth of Caulerpa paspaloids(Chlorophyceae). Mar. Biol. 97: 17-24.CrossRefGoogle Scholar
  31. Penniman CA, Mathieson AC (1985) Photosynthesis of Gracilaria tikvahiaeMcLachlan(Gigartinales, Rhodophyta) from the Great Bay Estuary, New Hampshire. Bot. mar. 28: 427-435.CrossRefGoogle Scholar
  32. Robledo RD (1994) Conocimiento de la macroflora marina de interes economico en las costas de Yucatan. Comision Nacional para el uso y conocimiento de la Biodiversidad CONABIO (FB 118-B077-94).Google Scholar
  33. Smith AH (1997) Seamoss Cultivation in theWest Indies. Caribbean Natural Resources Institute (CANARI), St. Lucia, West Indies.Google Scholar
  34. Subbaraju DP, Ramakrishna T, Murthy MS (1982) Influence of changes in salinity, pH, and temperature on the spores and sporelings of Padina tetrastromaticaHauck. J. exp. mar. Biol. Ecol. 58: 163-173.CrossRefGoogle Scholar
  35. Titlyanov EA, Titlyanova TV, Skriptsova AV (1995) Experimental field cultivation of the unattached form of Gracilaria verrucosain Russia. Russian J. mar. biol 21: 124-134.Google Scholar
  36. Westermeier R, Gomez I, Rivera P (1993) Suspended farming of Gracilaria chilensis(Rhodophyta, Gigartinales) at Cariquilda River, Maullin, Chile. Aquaculture 113: 215-229.CrossRefGoogle Scholar
  37. Yakovleva IM, Papashvili EV, Titlyanov EA (1997) Photosynthesis and respiration of unattached form of the red alga Gracilaria verrucosagrowing under different conditions of illumination and water mobility. Russian J. mar. Biol. 23: 37-43.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • C.J. Dawes
    • 1
  • J. Orduña-rojas
    • 2
  • D. Robledo
    • 2
  1. 1.Department of BiologyUniversity of South FloridaTampaU.S.A
  2. 2.Centro de Investigacion y de Estudios Avanzados del I.P.N. Unidad MéridaYucatanMexico

Personalised recommendations