Journal of Computer-Aided Molecular Design

, Volume 13, Issue 6, pp 547–562 | Cite as

The sensitivity of the results of molecular docking to induced fit effects: Application to thrombin, thermolysin and neuraminidase

  • Christopher W. Murray
  • Carol A. Baxter
  • A. David Frenkel
Article

Abstract

This paper describes the application of PROLEADS to the flexible docking of ligands into crystallographically derived enzyme structures that are assumed to be rigid. PROLEADS uses a Tabu search methodology to perform the flexible search and an empirically derived estimate of the binding affinity to drive the docking process. The paper tests the extent to which the assumption of a rigid enzyme compromises the accuracy of the results. All-pairs docking experiments are performed for three enzymes (thrombin, thermolysin and influenza virus neuraminidase) based on six or more ligand-enzyme crystal structures for each enzyme. In 76% of the cases, PROLEADS can successfully identify the correct ligand conformation as the lowest energy configuration when the enzyme structure is derived from that ligand's crystal structure, but the methodology only docks 49% of the cases successfully when the ligand is docked against enzyme crystal structures derived from other ligands. Small movements in the enzyme structure lead to an under-prediction in the energy of the correct binding mode by up to 14 kJ/mol and in some cases this under-prediction can lead to the native mode not being recognised as the lowest energy solution. The type of movements responsible for mis-docking are: the movement of sidechains as a result of changes in Cα position; the movement of sidechains without changes in Cα position; the movement of flexible portions of main chains to facilitate the formation of hydrogen bonds; and the movement of metal atoms bound to the enzyme active site. The work illustrates that the assumption of a rigid active site can lead to errors in identification of the correct binding mode and the assessment of binding affinity, even for enzymes which show relatively small shift in atomic positions from one ligand to the next. A good docking code, such as PROLEADS, can usually dock successfully if there is induced fit in relatively rigid enzymes but there remains the need to develop improved strategies for dealing with enzyme flexibility. The work implies that treatments of enzyme flexibility which focus only on sidechain rotations will not deal with the critical shifts responsible for mis-docking of ligands in thrombin, thermolysin and neuraminidase. The paper demonstrates the utility of all pairs docking experiments as a method of assessing the effectiveness of docking methodologies in dealing with enzyme flexibility.

ligand-protein docking metalloproteases neuraminidase serine proteases tabu search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.Google Scholar
  2. 2.
    Jones, G. and Willett, P., Curr. Opin. Biotech., 6 (1995) 652.Google Scholar
  3. 3.
    Lybrand, T.P., Curr. Opin. Struct. Biol., 5 (1995) 224.Google Scholar
  4. 4.
    Rosenfeld, R., Vajda, S. and Delisi, C., Ann. Rev. Biophys. Biomol. Struct., 24 (1995) 677.Google Scholar
  5. 5.
    Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recognition, 9 (1996) 175.Google Scholar
  6. 6.
    Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.Google Scholar
  7. 7.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.Google Scholar
  8. 8.
    Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.Google Scholar
  9. 9.
    Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.Google Scholar
  10. 10.
    Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.Google Scholar
  11. 11.
    Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput.-Aided Mol. Design, 10 (1996) 293.Google Scholar
  12. 12.
    Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2 (1995) 317.Google Scholar
  13. 13.
    Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Proteins Struct. Funct. Genet., 250 (1996) 342.Google Scholar
  14. 14.
    Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.Google Scholar
  15. 15.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.Google Scholar
  16. 16.
    Judson, R.S., Tan, Y.T., Mori, E., Melius, C., Jaeger, E.P., Treasurywala, A.M. and Mathiowetz, A., J. Comput. Chem., 16 (1995) 1405.Google Scholar
  17. 17.
    Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9 (1995) 113.Google Scholar
  18. 18.
    Clark, K.P. and Ajay, J. Comput. Chem., 16 (1995) 1210.Google Scholar
  19. 19.
    Yamada, M. and Itai, A., Chem. Pharm. Bull., 41 (1993) 1200.Google Scholar
  20. 20.
    McMartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 11 (1997) 333.Google Scholar
  21. 21.
    Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.Google Scholar
  22. 22.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.Google Scholar
  23. 23.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Comput.-Aided Mol. Design, 11 (1997) 369.Google Scholar
  24. 24.
    Westhead, D.R., Clark, D.E. and Murray, C.W., J. Comput.-Aided Mol. Design, 11 (1997) 209.Google Scholar
  25. 25.
    Glover, F. and Laguna, M., In Reeves, C.R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, Oxford, 1993, pp. 70–150.Google Scholar
  26. 26.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.Google Scholar
  27. 27.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.Google Scholar
  28. 28.
    Jain, A.J., J. Comput.-Aided Mol. Design, 10 (1996) 427.Google Scholar
  29. 29.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.Google Scholar
  30. 30.
    Baxter, C.A., Murray, C.W., Clark, D.E., Westhead, D.R. and Eldridge, M.D., Proteins Struct. Funct. Genet., 33 (1998) 367.Google Scholar
  31. 31.
    Molecular Simulations Inc., San Diego, CA. InsightII/Discover, v95.0, 1996.Google Scholar
  32. 32.
    Leach, A.R., J. Mol. Biol., 235 (1994) 345.Google Scholar
  33. 33.
    GOLD; http://www.ccdc.cam.ac.uk/prods/gold/index.htmlGoogle Scholar
  34. 34.
    Knegtel, R.A., Kuntz, I.D. and Oshiro, C.M., J. Mol. Biol., 266 (1997) 424.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Christopher W. Murray
    • 1
  • Carol A. Baxter
    • 1
  • A. David Frenkel
    • 1
  1. 1.Proteus Molecular Design Ltd., Beechfield HouseMacclesfieldU.K

Personalised recommendations