Landscape Ecology

, Volume 13, Issue 5, pp 285–306 | Cite as

Plants, small mammals, and the hierarchical landscape classifications of Patagonia

  • J. Adrian Monjeau
  • Elmer C. Birney
  • Luciana Ghermandi
  • Robert S. Sikes
  • Laura Margutti
  • Carleton J. Phillips
Article

Abstract

Assemblages of plants were studied at 14 sites in northern Patagonia corresponding to localities at which we (Monjeau et al. 1997) earlier studied the relationship between small mammal assemblages and landscape classifications. This allowed us to test predictions that both plants and small mammals correspond to the more inclusive hierarchical landscape divisions but that plants track better than small mammals the less inclusive divisions. Species presence or absence of plants at each locality was used in a series of multivariate analyses and compared by correlation analysis with those generated from small mammal species data. Assemblages of both plants and small mammals corresponded to the upper divisions, which are based on climatic and geomorphological features, but small mammal assemblages did not correspond to the lower divisions of the landscape classifications. Three factors are considered as explanations for the observed differences between plants and small mammals: a) small mammal habitat is determined more by plant growth form than by plant species; b) trophic level differences between the two groups; and c) species pool size affects the resolution of microhabitat correspondence. Our data indicate that both plant assemblages and small mammal assemblages respond to climatic and geomorphological features, which is in contrast to the paradigm that mammal assemblages simply follow plant assemblages. We also attempted to reconcile classification systems in Patagonia by proposing a nomenclatural system based on a hierarchical classification. In the system proposed, ecoregion is the lowest division small mammal assemblages can recognize in Patagonia. Finally, we conclude that the hierarchical nature of landscapes based on a holistic view of environments reflects real entities that are not just the perceptions of landscape ecologists.

hierarchical landscape classifications Patagonia small mammals plants floristic composition communities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, M.R., Paruelo, J.M., Golluscio, R.A., León, R.J.C., Burkart, S.E. and Pujol G. 1988. The heterogeneity of the vegetation in arid and semiarid Patagonia: an analysis using AVHRR/NOAA satellite imagery. Annali di Botanica 46: 103–114.Google Scholar
  2. Bailey, R.G. 1987. Suggested hierarchy of criteria for multiscale ecosystem mapping. Landscape and Urban Planning 14: 313–319.Google Scholar
  3. Beeskow, A.M., Beltramonte, C. and del Valle, H.F. 1982. Relevamiento fisiográfico expeditivo de la meseta de Somuncurá. Contribuciones del Centro Nacional Patagónico 66: 1–12.Google Scholar
  4. Bertiller, M.B. and Beeskow, A.M. 1981. Las unidades florístico-fisonómicas de la vegetación de la Península Valdés y sus alrededores. pp. 10–11. VII Reunión Argentina de Ecología.Google Scholar
  5. Bertiller, M.B., Elissalde, N.O., Rostagno, C.M. and Defosse, G.E. 1995. Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. Journal of Arid Environments 29: 85–97.Google Scholar
  6. Birney, E.C., Grant, W.E. and Baird, D.D. 1976. Importance of vegetative cover to cycles of Microtus populations. Ecology 57: 1043–1051.Google Scholar
  7. Birney, E.C., Monjeau, J.A., Phillips, C.J., Sikes, R.S. and Kim, I. 1996. Lestodelphys halli: new information on a poorly known Argentine marsupial. Mastozoología Neotropical 3: 171–181.Google Scholar
  8. Bouchard, A., Hay, S., Bergeron, Y. and Leduc, A. 1991. The vascular flora of Gros Morne National Park, Newfoundland: a habitat classification approach based on floristic, biogeographical and life-form data. In Quantitative Approaches to Phytogeography. pp. 123–157. Edited by P.L. Nimis and T.J. Crovello. Kluwer Academic Publishers. The Netherlands.Google Scholar
  9. Box, E.O. 1981 Predicting physiognomic vegetation types with climate variables. Vegetatio 45: 127–139.Google Scholar
  10. Box, E.O., Holben, B.N. and Kalb, V. 1989. Accuracy of the AVHRR Vegetation Index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80: 71–89.Google Scholar
  11. Bran, D. 1992. Las regiones ecológicas de la Patagonia y sus principales formaciones vegetales. Comunicación Técnica INTA 3: 1–12Google Scholar
  12. Cabrera, A.L. 1969. Compuestas nuevas de la Patagonia. Boletín de la Sociedad Argentina de Botánica 11: 271.Google Scholar
  13. Cabrera, A.L. 1971. Fitogeografía de la RepÚblica Argentina. Boletín de la Sociedad Argentina de Botánica 14: 1–42.Google Scholar
  14. Cain, S.A. 1944. Foundations of Plant Geography. Harper, New York.Google Scholar
  15. Cei, J.M. 1969. The Patagonian telmatobiid fauna of the volcanic Somuncurá Plateau. Journal of Herpetology 3: 1–18.Google Scholar
  16. Cei, J.M. 1985. Notas sobre especies de Liolaemus de la meseta de Somuncurá, Río Negro y rectificación de los géneros Liolaemus kingi somuncurae. Boletin de la Asociación Herpetológica Argentina 1: 1–15.Google Scholar
  17. Clements, F.E. and Shelford, V.E. 1939. Bio-Ecology. John Wiley and Sons, New York.Google Scholar
  18. Correa, M.N. 1969. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte II. Monocotyledonae (excepto Graminae). Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  19. Correa, M.N. 1971. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte VII. Compositae. Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  20. Correa, M.N. 1978. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte III. Graminae. Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  21. Correa, M.N. 1984a. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte IVa. Dicotyledoneas dialipétalas (Salicaceas a Crucíferas). Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  22. Correa, M.N. 1984b. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte IVb. Dycotiledoneas dialipétalas (Droseaceae a Leguminosae). Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  23. Correa, M.N. 1988. Flora Patagónica (RepÚblica Argentina). Tomo VIII Parte V. Dycotiledoneas dialipétalas (Oxalidaceae a Cornaceae). Colección Científica Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.Google Scholar
  24. Crespo, J.A. 1963. Dispersión del chinchillón, Lagidium viscacia (Molina) en el Noroeste de Patagonia y descripción de una nueva subespecie (Mammalia, Rodentia), Lagidium viscacia somuncurensis. Neotropica 9: 61–63.Google Scholar
  25. Crowell, K.L. 1962. Reduced interspecific competition among the birds of Bermuda. Ecology 43: 75–88.Google Scholar
  26. Erwin, T.L. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. The Coleopterologists Bulletin 36: 74–75.Google Scholar
  27. Erwin, T.L. 1983. Beetles and other insects of tropical canopies at Manaus, Brazil. In Tropical Rain Forest. pp. 59–75. Edited by S.C Sutton, T.C. Whitmore and A.C. Chadwick, Blackwell, London.Google Scholar
  28. Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley and Sons, New York.Google Scholar
  29. Gallardo, J.M., Rumbol, M., Canevari, M., Canevari, P. and Vasina, W.G. 1983. Animals. In Temperate deserts and semi-deserts. pp. 454–457. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.Google Scholar
  30. Gauch, H.G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.Google Scholar
  31. Glanz, W.E. 1977. Comparative ecology of small mammal communities in California and Chile. Unpublished Ph. D. dissertation, University of California, Berkeley.Google Scholar
  32. Golluscio, R.A., León, R.J.C. and Perelman, S.B. 1982. Caracterización fitosociológica de la estepa del Oeste de Chubut. Su relación con el gradiente ambiental. Boletín de la Sociedad Argentina de Botánica 21: 299–324.Google Scholar
  33. Grabherr, G. and Kojima, S. 1993. Vegetation diversity and classi-fication systems. In Vegetation Dynamics & Global Change. pp. 218–232. Edited by A.M. Solomon and H. Shugart. Chapman and Hall, New York.Google Scholar
  34. Grant, W.E. and Birney, E.C. 1979. Small mammal community structure in North American grasslands. Journal of Mammalogy 60: 23–36.Google Scholar
  35. Hansen, A.S. and di Castri, F. (eds.) 1992. Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flow. Springer-Verlag, New York.Google Scholar
  36. Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.Google Scholar
  37. Holland, M.M. and Risser, P.G. 1991. Introduction: The role of landscape boundaries in the management and restoration of changing environments. In Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. pp 1–7. Edited by M.M. Holland, P.G. Risser and R.J. Naiman. Chapman & Hall, London.Google Scholar
  38. Holland, M.M., Risser, P.G. and. Naiman, R.J. (eds.) 1991. Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. Chapman and Hall. Washington, D.C.Google Scholar
  39. Jardine, N. 1972. Computational methods in the study of plant distributions. In Taxonomy, Phytogeography and Evolution. pp. 381–393. Edited by D.H. Valentine. Academic Press, New York.Google Scholar
  40. Jobággy, E.G., Paruelo, J.M. and León, R.J.C. 1996. Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science 7: 599–608.Google Scholar
  41. Jongman, R.H.G., Ter Braak, C.J.F. and van Tongeren, O.F.R. (eds.) 1987. Data Analysis in Community and Landscape Ecology. Pudoc Wageningen, Wageningen, The Netherlands.Google Scholar
  42. Kelt, D.A., Meserve, P.L. and Lang, B.K. 1994. Quantitative habitat associations of small mammals in a temperate rainforest in southern Chile: empirical patterns and the importance of ecological scale. Journal of Mammalogy 75: 890–904.Google Scholar
  43. Klijn, F. and Udo de Haes, H.A. 1994. A hierarchical approach to ecosystems and its implications for ecological land classification. Landscape Ecology 9: 89–104.Google Scholar
  44. Krapovickas, A. 1969. Una nueva especie de Lecanophora, Speg. (Malvaceae). Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo 15: 36–38.Google Scholar
  45. Lores, M. 1982. Ordenamiento y clasificación de comunidades en la región oriental de la Meseta de Somuncurá (Pcia de Río Negro). Memoria Técnica, INTA EEA Bariloche 5: 72–81.Google Scholar
  46. Lozada, M., Monjeau, J.A., Heinemann, K.M, Guthmann, N. and Birney, E.C. 1996. Abrothrix xanthorhinus. Mammalian Species 540: 1–6.Google Scholar
  47. MacArthur, R.H., Recher, H. and Cody, M. 1966. On the relation between habitat selection and species diversity. American Naturalist 100: 319–332.Google Scholar
  48. MacMahon, J.A. 1976. Species and guild similarity of North American desert mammal faunas: a functional analysis of communities. In Evolution of Desert Biota. pp. 133–148. Edited by D.W. Goodall. University of Texas Press, Austin.Google Scholar
  49. Mantel, N.A. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.Google Scholar
  50. Marcolín, A. and Vallerini, J.A. 1983. Soils. In Temperate Deserts and Semi-deserts. pp. 435–440. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  51. Mateucci, S. D. and Colma, A. 1982. Metodología para el Estudio de la Vegetación. Organization of American States, No. 22, Washington, D.C.Google Scholar
  52. Menni, R.C. and Gomez, S.E. 1995. On the habitat and isolation of Gymnocharacinus bergi (Osteichthyes: Characidae). Environmental Biology of Fishes 42: 15–23.Google Scholar
  53. Merriam, C.H. 1890. Results of a biological survey of the San Francisco Mountain region and desert of the Little Colorado, Arizona. North American Fauna 3: 1–136.Google Scholar
  54. Merriam, C.H. 1894. Laws of temperature control of the geographic distribution of terrestrial animals and plants. National Geographic Magazine 6: 229–238.Google Scholar
  55. Meserve, P.L. 1981a. Resource partitioning in a Chilean semi-arid small mammal community. Journal of Animal Ecology 50: 745–757.Google Scholar
  56. Meserve, P.L. 1981b. Trophic relationships among small mammals in a Chilean semiarid thorn scrub community. Journal of Mammalogy 62: 304–314.Google Scholar
  57. Meserve, P.L. and Glanz, W.E. 1978. Geographical ecology of small mammals in the northern Chilean arid zone. Journal of Biogeography 5: 135–148.Google Scholar
  58. Monjeau, J.A. 1989. Ecología y distribución geográfica de los pequeños mamíferos del Parque Nacional Nahuel Huapi y áreas adyacentes. Unpublished Ph. D. dissertation. Universidad Nacional de La Plata, Argentina.Google Scholar
  59. Monjeau, J.A., Bonino, N. and Saba, S. 1994. Annotated checklist of the living land mammals in Patagonia, Argentina. Mastozoología Neotropical 1: 143–156.Google Scholar
  60. Monjeau, J.A., Sikes R.S., Birney E.C, Guthmann N. and. Phillips C.J. (1997). Small mammal community composition within the major landscape divisions of Patagonia, southern Argentina. Mastozoología Neotropical 4: 113–127.Google Scholar
  61. Morris, D.W. and Knight, T.W. 1996. Can consumer-resource dynamics explain patterns of guild assembly?. The American Naturalist 147: 558–575.Google Scholar
  62. Morton, S.R., Brown, J.H., Kelt, D.A and Reid, J.R. 1994. Comparison of community structure among small mammals of North American and Australian deserts. Australian Journal of Zoology 42: 501–525.Google Scholar
  63. Movia, C.P. 1983. Erosion forms and processes. In Temperate Deserts and Semi-deserts. pp. 438–440. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  64. Mueller-Dombois, D. and Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York.Google Scholar
  65. Myers, V.I. 1983. Remote sensing application in agriculture. In Manual of Remote Sensing, Vol. II. Interpretations and Applications. Chapter 33. Edited by R.N. Colwell. American Society of Photogrammetry.Google Scholar
  66. Naimann, R.J., Décamps, H., Pastor, J., and Johnston, C.A. 1988. The potential importance of boundaries to fluvial ecosystems. Journal of the North American Benthological Society 7: 289–306.Google Scholar
  67. Parmenter, R.R. and MacMahon, J.A. 1983. Factors determining the abundance and distribution of rodents in a shrub-steppe ecosystem: the role of shrubs. Oecologia 59: 145–156.Google Scholar
  68. Paruelo, J.M., Aguiar, M.R., León, R.J.C., Golluscio, R.A. and Batista, W.B. 1991. The use of satellite imagery in quantitative phytogeography: a case study of Patagonia (Argentina). In Quantitative Approaches to Phytogeography. pp. 183–204. Edited by P.L. Nimis and T.J. Crovello. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  69. Patterson, B.D., Meserve, P.L. and Lang, B.K. 1989. Distribution and abundance of small mammals along an elevational transect in temperate rainforest of Chile. Journal of Mammalogy 70: 67–78.Google Scholar
  70. Patterson, B.D., Meserve, P.L. and Lang, B.K. 1990. Quantitative habitat association of small mammals along an elevational transect in temperate rainforest of Chile. Journal of Mammalogy 71: 620–633.Google Scholar
  71. Pearson, O.P. and Pearson, A.K. 1982. Ecology and biogeography of the southern rainforest of Argentina. In Mammalian Biology in South America. pp. 129–142. Edited by M.A. Mares and H.H. Genoways. Special Publication Series 6, Pymatuning Laboratory of Ecology, University of Pittsburgh.Google Scholar
  72. Prohaska, F. 1976. The climate of Argentina, Paraguay and Uruguay. In World Survey of Climatology, Vol. 12: Climates of Central and South America. pp. 13–112. Edited byW. Schwerdtfeger. Elsevier, New York.Google Scholar
  73. Rapoport, E.H. 1982. Areography: Geographical Strategies of the Species. Pergamon Press, London.Google Scholar
  74. Rohlf, F.J., Kishpaugh, J. and Kirk, D. 1982. NT-SYS. Numerical taxonomy system of multivariate statistical program. State University, New York, Stony Brook.Google Scholar
  75. Rowe, J.S. 1961. The level of integration concept and ecology. Ecology 42: 420–427.Google Scholar
  76. Ruiz Leal, A. 1972. Los confines boreal y austral de las Provincias Patagónica y Central respectivamente. Boletín de la Sociedad Argentina de Botánica 13: 89–118.Google Scholar
  77. SAS Institute Inc. 1990. SAS User's Guide: Statistics, Version 6. Cary, North Carolina.Google Scholar
  78. Schultz, A.M. 1967. The ecosystem as a conceptual tool in the management of natural resources. In Natural Resources: Quality and Quantity. Edited by S.V. Ciriacy-Wantrup and J.J. Parsons. University of California Press, Berkeley and Los Angeles.Google Scholar
  79. Soriano, A. 1949. El límite entre las provincias botánicas Patagónica y Central en el territorio del Chubut. Lilloa 20: 193–202.Google Scholar
  80. Soriano, A. 1956. Los distritos florísticos de la Provincia Patagónica. Revista de Investigaciones Agrícolas 10: 323–347.Google Scholar
  81. Soriano, A. 1983. Deserts and semi-deserts of Patagonia. In Temperate Deserts and Semi-deserts. pp. 423–459. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  82. Soriano, A., Movia, C.P. and León, R. 1983. Vegetation of Patagonia. In Temperate deserts and semi-deserts. pp. 440–454. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  83. Soriano, A. and Paruelo, J.M. 1992. Biozones: vegetation units defined by functional characters identifiable with the aid of satellite sensor images. Global Ecology and Biogeography Letters 2: 82–89.Google Scholar
  84. Ter Braak, C.J.F. and Prentice, I.C. 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.Google Scholar
  85. Tilman, D. 1982. Resource partitioning and community structure. Princeton University Press, Princeton, New Jersey.Google Scholar
  86. Urban, D.L., O'Neill, R.V. and Shugart, H.H. 1987. Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37: 119–127.Google Scholar
  87. del Valle, H.F., Labraga, J.C. and Goergen, J. 1995. Biozonas de la Región Patagónica. In Evaluación del Estado Actual de la Desertificación en Areas Representativas de la Patagonia: Informe Final de la etapa I. pp. 37–55. Edited by INTA-GTZ, Río Gallegos-Trelew-Puerto Madryn-Bariloche.Google Scholar
  88. Volkheimer, W. 1983a. Geology of extra-Andean Patagonia. In Temperate Deserts and Semi-deserts. pp. 425–429. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  89. Volkheimer, W. 1983b. Aspects of vegetational history. In Temperate Deserts and Semi-deserts. pp. 429–430. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  90. Volkheimer, W. 1983c. Paleoclimates. In Temperate Deserts and Semi-deserts. pp. 430–432. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  91. Walter, H. and Box, E.O. 1983. Climate of Patagonia. In Temperate Deserts and Semi-deserts. pp. 432–435. Edited by N.E. West. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  92. Wiens, J.A., Crawford, C.S. and Gosz, J.R. 1985. Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45: 421–427.Google Scholar
  93. Wilson, E.O. 1992. The diversity of life. W. W. Norton & Co. New York.Google Scholar
  94. Zonneveld, I.S. 1989. The land unit – A fundamental concept in landscape ecology, and its applications. Landscape Ecology 3: 67–86.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. Adrian Monjeau
    • 1
    • 2
  • Elmer C. Birney
    • 1
  • Luciana Ghermandi
    • 2
  • Robert S. Sikes
    • 1
  • Laura Margutti
    • 2
  • Carleton J. Phillips
    • 3
  1. 1.Bell Museum of Natural History and Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. Paul
  2. 2.Departamento de EcologíaUniversidad Nacional del ComahueNegroArgentina
  3. 3.Department of Biological SciencesIllinois State UniversityNormalUSA

Personalised recommendations