International Journal of Computer Vision

, Volume 31, Issue 2–3, pp 111–127

Coherence-Enhancing Diffusion Filtering

  • Joachim Weickert
Article

Abstract

The completion of interrupted lines or the enhancement of flow-like structures is a challenging task in computer vision, human vision, and image processing. We address this problem by presenting a multiscale method in which a nonlinear diffusion filter is steered by the so-called interest operator (second-moment matrix, structure tensor). An m-dimensional formulation of this method is analysed with respect to its well-posedness and scale-space properties. An efficient scheme is presented which uses a stabilization by a semi-implicit additive operator splitting (AOS), and the scale-space behaviour of this method is illustrated by applying it to both 2-D and 3-D images.

image enhancement scale-space texture nonlinear diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almansa, A. and Lindeberg, T. 1997. Enhancement of fingerprint images using shape-adapted scale-space operators, in J. Sporring, M. Nielsen, L. Florack and P. Johansen, Eds., Gaussian Scalespace Theory, Kluwer Academic Publishers, Dordrecht, pp. 3–19. Google Scholar
  2. Alt, H.W. 1992. Lineare Funktionalanalysis, Springer, Berlin. Google Scholar
  3. Alvarez, L., Guichard, F., Lions, P.L. and Morel, J.-M. 1993. Axioms and fundamental equations in image processing, Arch. Rational Mech. Anal., Vol. 123, pp. 199–257. Google Scholar
  4. Alvarez, L., Lions, P.L. and Morel, J.-M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., Vol. 29, pp. 845–866. Google Scholar
  5. Babaud, J., Witkin, A.P., Baudin, M. and Duda, R.O. 1986 Uniqueness of the Gaussian kernel for scale space filtering, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, pp. 26–33. Google Scholar
  6. Bacon, G.E., Bacon, P.J. and Griffiths, R.K. 1979 The orientation of apatite crystals in bone, J. Appl. Crystallography, Vol. 12, pp. 99–103. Google Scholar
  7. Bigün, J. and Granlund, G.H. 1987. Optimal orientation detection of linear symmetry, Proc. First Int. Conf. on Computer Vision (ICCV' 87), London, IEEE Computer Society Press, Washington, pp. 433–438. Google Scholar
  8. van den Boomgaard, R. 1992. The morphological equivalent of the Gauss convolution, Nieuw Archief Voor Wiskunde, Vierde Serie, Deel 10, pp. 219–236. Google Scholar
  9. Brezis, H. 1973. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam. Google Scholar
  10. Brezis, H. 1992. Analyse fonctionelle, Masson, Paris. Google Scholar
  11. Buck, B. and Macaulay V., Eds. 1991. Maximum entropy in action, Clarendon, Oxford. Google Scholar
  12. Carmona, R. and Zhong, S. 1998. Adaptive smoothing respecting feature directions, IEEE Trans. Image Proc., Vol. 7, pp. 353–358. Google Scholar
  13. Catté, F., Lions, P.-L., Morel, J.-M. and Coll, T. 1992. Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., Vol. 29, pp. 182–193. Google Scholar
  14. Cottet, G.-H. and El Ayyadi, M. 1996. Nonlinear PDE operators with memory terms for image processing, Proc. IEEE Int. Conf. Image Processing (ICIP–96), Lausanne, Vol. 1, pp. 481–483. Google Scholar
  15. Cottet, G.-H. and Germain, L. 1993. Image processing through reaction combined with nonlinear diffusion, Math. Comp., Vol. 61, pp. 659–673. Google Scholar
  16. Ford, G.E., Estes, R.R. and Chen, H. 1992. Scale-space analysis for image sampling and interpolation, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP–92), San Francisco, Vol. 3, pp. 165–168. Google Scholar
  17. Förstner, M.A. and Gülch, E. 1987. A fast operator for detection and precise location of distinct points, corners and centres of circular features, Proc. ISPRS Intercommission Conf. on Fast Processing of Photogrammetric Data (Interlaken), pp. 281–305. Google Scholar
  18. Gerig, G., Kübler, O., Kikinis, R. and Jolesz, F.A. 1992. Nonlinear anisotropic filtering of MRI data, IEEE Trans. Medical Imaging, Vol. 11, pp. 221–232. Google Scholar
  19. van Gogh, V. 1889. Selfportrait, Saint-Rémy, Paris, Museéd'Orsay. Google Scholar
  20. van Gogh, V. 1890. Road with cypress and star, Auvers-sur-Oise, Otterlo, Rijksmuseum Kröller–Müller. Google Scholar
  21. Granlund, G.H. and Knutsson, H. 1995. Signal processing for computer vision, Kluwer, Dordrecht. Google Scholar
  22. Gonzalez, R.C. and Wintz, P. 1987. Digital image processing, Addison–Wesley, Reading. Google Scholar
  23. ter Haar Romeny, B.M., Ed. 1994. Geometry-driven diffusion in computer vision, Kluwer, Dordrecht. Google Scholar
  24. ter Haar Romeny, B.M., Niessen, W.J., Weickert, J., van Roermund, P., van Enk, W.J., Lopez, A. and Maas, R. 1996. Orientation detection of trabecular bone, in Progress in Biophysics and Molecular Biology, Proc. 12th Int. Biophysics Congress, Amsterdam, Vol. 65, Poster P–H5–43. Google Scholar
  25. Hummel, R.A. 1986. Representations based on zero-crossings in scale space, Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition (CVPR' 86), Miami Beach, IEEE Computer Society Press, Washington, pp. 204–209. Google Scholar
  26. Iijima, T. 1962. Basic theory on normalization of pattern (in case of typical one-dimensional pattern), Bulletin of the Electrotechnical Laboratory, Vol. 26, pp. 368–388 (in Japanese). Google Scholar
  27. Jähne, B. 1993. Spatio-temporal image processing, Lecture Notes in Comp. Science, Vol. 751, Springer, Berlin. Google Scholar
  28. Kass, M. and Witkin, A. 1987. Analyzing oriented patterns, Computer Vision, Graphics, and Image Processing, Vol. 37, pp. 362–385. Google Scholar
  29. Kawohl, B. and Kutev, N. 1997 Maximum and comparison principles for anisotropic diffusion, Preprint, Mathematical Institute, University of Cologne, 50923 Cologne, Germany.Google Scholar
  30. Kimia, B.B., Tannenbaum, A. and Zucker, S.W. 1990. Toward a computational theory of shape: An overview, in O. Faugeras, Ed., Computer Vision – ECCV' 90, Lecture Notes in Comp. Science, 427, Springer, Berlin, pp. 402–407. Google Scholar
  31. Koenderink, J.J. 1984. The structure of images, Biol. Cybern., Vol. 50, pp. 363–370. Google Scholar
  32. Krissian, K., Malandain, G. and Ayache, N. 1996. Directional anisotropic diffusion applied to segmentation of vessels in 3D images, in B. ter Haar Romeny, L. Florack, J. Koenderink and M. Viergever, Eds., Scale-space theory in computer vision, Lecture Notes in Comp. Science, 1252, Springer, Berlin, pp. 345–348. Google Scholar
  33. Lindeberg, T. and Gårding, J. 1997. Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure, Image and Vision Computing, Vol. 15, pp. 415–434. Google Scholar
  34. Marchuk, G.I. 1990. Splitting and alternating direction methods, in P.G. Ciarlet and J.-L. Lions, Eds., Handbook of numerical analysis, Vol. I, pp. 197–462.Google Scholar
  35. Meyer, H. and Culman, M. 1867. Die Architektur der Spongiosa, Arch. Anat. Physiol., Vol. 47, pp. 615–628.Google Scholar
  36. Niessen, W.J., López, A.M., van Enk, W.J., van Roermund, P.M., ter Haar Romeny, B.M. and Viergever, M.A. 1997. In vivo analysis of trabecular bone architecture, in J.S. Duncan and G. Gindi, Eds., Information processing in medical imaging, Lecture Notes in Comp. Science, 1230, Springer, Berlin, pp. 435–440.Google Scholar
  37. Niessen, W.J., Vincken, K.L., Weickert, J. and Viergever, M.A. 1997a. Nonlinear multiscale representations for image segmentation, Computer Vision and Image Understanding, Vol. 66, pp. 233–245.Google Scholar
  38. Niessen, W.J., Vincken, K.L., Weickert, J. and Viergever, M.A. 1998. Three-dimensional MR brain segmentation, Proc. Sixth Int. Conf. on Computer Vision (ICCV' 98), Bombay, pp. 53–58.Google Scholar
  39. Nitzberg, M. and Shiota, T. 1992. Nonlinear image filtering with edge and corner enhancement, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, pp. 826–833.Google Scholar
  40. Olver, P.J., Sapiro, G. and Tannenbaum, A. 1994. Classification and uniqueness of invariant geometric flows, C. R. Acad. Sci. Paris, t. 319, Série I, pp. 339–344.Google Scholar
  41. Payot, E., Guillemaud, R., Trousset, Y. and Preteux, F. 1996. An adaptive and constrained model for 3D X-ray vascular reconstruction, in P. Grangeat and J.-L. Amans, Eds., Three-dimensional image reconstruction in radiation and nuclear medicine, Kluwer Academic Publishers, Dordrecht, pp. 47–57.Google Scholar
  42. Perona, P. and Malik, J. 1990. Scale space and edge detection using anisotropic diffusion, IEEE Trans.Pattern Anal. Mach. Intell.,Vol. 12, pp. 629–639.Google Scholar
  43. Rambaux, I. and Garçon, P. 1994. Nonlinear anisotropic diffusion filtering of 3D images, project work, Département Génie Mathématique, INSA de Rouen and Laboratory of Technomathematics, University of Kaiserslautern.Google Scholar
  44. Rao, A.R. and Schunck, B.G. 1991. Computing oriented texture fields, CVGIP: Graphical Models and Image Processing, Vol. 53, pp. 157–185.Google Scholar
  45. Rieger, J.H. 1995. Generic evolution of edges on families of diffused greyvalue surfaces, J. Math. Imag. Vision, Vol. 5, pp. 207–217.Google Scholar
  46. Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale-space, Int. J. Comput. Vision, Vol. 11, pp. 25–44.Google Scholar
  47. Schwarz, H.R. 1988. Numerische Mathematik, Teubner, Stuttgart.Google Scholar
  48. Sporring, J. and Weickert, J. 1997. On generalized entropies and scale-space, in B. ter Haar Romeny, L. Florack, J. Koenderink and M. Viergever, Eds., Scale-space theory in computer vision, Lecture Notes in Comp. Science, 1252, Springer, Berlin, pp. 53–64.Google Scholar
  49. Vincken, K.L., Koster, A.S.E. and Viergever, M.A. 1997. Probabilistic multiscale image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., pp. 109–120.Google Scholar
  50. Weickert, J. 1995. Multiscale texture enhancement, in V. Hlaváč and R. Šára, Eds., Computer analysis of images and patterns, Lecture Notes in Comp. Science, 970, Springer, Berlin, pp. 230–237.Google Scholar
  51. Weickert, J. 1996. Theoretical foundations of anisotropic diffusion in image processing, Computing, Suppl. 11, pp. 221–236.Google Scholar
  52. Weickert, J. 1997. Coherence-enhancing diffusion of colour images, in A. Sanfeliu, J.J. Villanueva and J. Vitrià, Eds., Pattern Recognition and Image Analysis (VII NSPRIA), Barcelona, Vol. 1, pp. 239–244. Extended version to appear in Image and Vision Computing, Vol. 17, pp. 199–210, 1999.Google Scholar
  53. Weickert, J. 1997a. A review of nonlinear diffusion filtering, in B. ter Haar Romeny, L. Florack, J. Koenderink and M. Viergever, Eds., Scale-space theory in computer vision, Lecture Notes in Comp. Science, 1252, Springer, Berlin, pp. 3–28.Google Scholar
  54. Weickert, J. 1998. Anisotropic diffusion in image processing, Teubner-Verlag, Stuttgart.Google Scholar
  55. Weickert, J., Ishikawa, S. and A. Imiya. 1997. On the history of Gaussian scale-space axiomatics, in J. Sporring, M. Nielsen, L. Florack and P. Johansen, Eds., Gaussian scale-space theory, Kluwer Academic Publishers, Dordrecht, pp. 45–59.Google Scholar
  56. Weickert, J., ter Haar Romeny, B.M., Lopez, A. and van Enk, W.J. 1997a. Orientation analysis by coherence-enhancing diffusion, Proc. Symp. Real World Computing (RWC' 97), Tokyo, pp. 96–103.Google Scholar
  57. Weickert, J., ter Haar Romeny, B.M. and Viergever, M.A. 1998. Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Proc., Vol. 7, pp. 398–410.Google Scholar
  58. Weickert, J., Zuiderveld, K.J., ter Haar Romeny, B.M. and Niessen, W.J. 1997b. Parallel implementations of AOS schemes: A fastway of nonlinear diffusion filtering, Proc. 1997 IEEE International Conference on Image Processing (ICIP–97), Santa Barbara, Vol 3., pp. 396–399.Google Scholar
  59. Witkin, A.P. 1983. Scale-space filtering, Proc. Eighth Int. Joint Conf. on Artificial Intelligence (IJCAI' 83), Karlsruhe, Vol. 2, pp. 1019–1022.Google Scholar
  60. Wolff, J. 1870. Über die innere Architektur der Knochen, Virchows Arch., Vol. 50, pp. 389–453.Google Scholar
  61. Yang, G.Z., Burger, P., Firmin, D.N., Underwood, S.R. 1996. Structure adaptive anisotropic filtering, Image and Vision Computing, Vol. 14, pp. 135–145.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Joachim Weickert
    • 1
  1. 1.Image Sciences InstituteUniversity Hospital Utrecht, HP E01.334UtrechtThe Netherlands

Personalised recommendations