Journal of Computer-Aided Molecular Design

, Volume 13, Issue 5, pp 435–451

MCDOCK: A Monte Carlo simulation approach to the molecular docking problem

  • Ming Liu
  • Shaomeng Wang


Prediction of the binding mode of a ligand (a drug molecule) to its macromolecular receptor, or molecular docking, is an important problem in rational drug design. We have developed a new docking method in which a non-conventional Monte Carlo (MC) simulation technique is employed. A computer program, MCDOCK, was developed to carry out the molecular docking operation automatically. The current version of the MCDOCK program (version 1.0) allows for the full flexibility of ligands in the docking calculations. The scoring function used in MCDOCK is the sum of the interaction energy between the ligand and its receptor, and the conformational energy of the ligand. To validate the MCDOCK method, 19 small ligands, the binding modes of which had been determined experimentally using X-ray diffraction, were docked into their receptor binding sites. To produce statistically significant results, 20 MCDOCK runs were performed for each protein–ligand complex. It was found that a significant percentage of these MCDOCK runs converge to the experimentally observed binding mode. The root-mean-square (rms) of all non-hydrogen atoms of the ligand between the predicted and experimental binding modes ranges from 0.25 to 1.84 Å for these 19 cases. The computational time for each run on an SGI Indigo2/R10000 varies from less than 1 min to 15 min, depending upon the size and the flexibility of the ligands. Thus MCDOCK may be used to predict the precise binding mode of ligands in lead optimization and to discover novel lead compounds through structure-based database searching.

flexible ligand docking ligand and protein interaction molecular recognition Monte Carlo simulation structure-based drug discovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blundell, T.L., Nature, 384 (1996) 23.Google Scholar
  2. 2.
    Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.Google Scholar
  3. 3.
    Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recogn., 9 (1996) 175.Google Scholar
  4. 4.
    Jones, G. and Willett, P., Curr. Opin. Biotechnol., 6 (1995) 652.Google Scholar
  5. 5.
    Kuntz, I.D., Science, 257 (1992) 1078.Google Scholar
  6. 6.
    Villar, H.O. and Koehler, R.T., The Molecular Modeling e-conference, 1 (1997) 23.Google Scholar
  7. 7.
    Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 223.Google Scholar
  8. 8.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.Google Scholar
  9. 9.
    Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J.Mol. Biol., 248 (1995) 459.Google Scholar
  10. 10.
    Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.Google Scholar
  11. 11.
    Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recogn., 9 (1996) 1.Google Scholar
  12. 12.
    Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669.Google Scholar
  13. 13.
    Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 683.Google Scholar
  14. 14.
    Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 8 (1994) 347.Google Scholar
  15. 15.
    Mizutani, M.Y., Tomioka, N. and Itai, A., J. Mol. Biol., 243 (1994) 310.Google Scholar
  16. 16.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 207 (1997) 727.Google Scholar
  17. 17.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.Google Scholar
  18. 18.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994), 243.Google Scholar
  19. 19.
    DeWitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.Google Scholar
  20. 20.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.Google Scholar
  21. 21.
    Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.Google Scholar
  22. 22.
    Caflisch, A., Fischer, S. and Karplus, M., J. Comput. Chem., 18 (1997) 723.Google Scholar
  23. 23.
    Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13 (1992) 223.Google Scholar
  24. 24.
    Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13 (1992) 206.Google Scholar
  25. 25.
    Yue, S.-Y., Protein Eng., 4 (1990) 177.Google Scholar
  26. 26.
    Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9 (1995) 113.Google Scholar
  27. 27.
    Nicklaus, M.C., Wang, S., Driscoll, J.S. and Milne, G.W. Bioorg. Med. Chem., 3 (1995) 411.Google Scholar
  28. 28.
    Makino, S. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1812.Google Scholar
  29. 29.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.Google Scholar
  30. 30.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.Google Scholar
  31. 31.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.Google Scholar
  32. 32.
    PDB. The Protein Data Bank web site is Scholar
  33. 33.
    Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchel, G.E., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.Google Scholar
  34. 34.
    Pearlman, R.S., Chem. Des. Autom. News, 2 (1987) 1.Google Scholar
  35. 35.
    Gasteiger, J., Rudolph, C. and Sadowski, J, Tetrahedron Comput. Methodol., 3 (1990) 537.Google Scholar
  36. 36.
    QUANTA is a product of Molecular Simulation, Inc., San Diego, CA.Google Scholar
  37. 37.
    Metropolis, N. and Ulam, S., J. Am. Stat. Assoc., 44 (1949) 335.Google Scholar
  38. 38.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1990, pp. 146–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Ming Liu
    • 1
  • Shaomeng Wang
    • 1
  1. 1.The Drug Discovery ProgramGeorgetown Institute for Cognitive and Computational Science, Georgetown University Medical CenterWashingtonU.S.A

Personalised recommendations