Journal of Paleolimnology

, Volume 21, Issue 1, pp 19–34 | Cite as

Climatic and anthropogenic influence on the stable isotope record from bulk carbonates and ostracodes in Lake Neuchâ, Switzerland, during the last two millennia

  • M.L. Filippi
  • P. Lambert
  • J. Hunziker
  • B. Kübler
  • S. Bernasconi


Lake Neuchåtel is a medium sized, hard-water lake, lacking varved sediments, situated in the western Swiss Lowlands at the foot of the Jura Mountains. Stable isotope data (δ18O and δ13C) from both bulk carbonate and ostracode calcite in an 81 cm long, radiocarbon-dated sediment core represent the last 1500 years of Lake Neuchåtel's environmental history. Comparison between this isotopic and other palaeolimnologic data (mineralogical, geochemical, palynological, etc.) helps to differentiate between anthropogenic and natural factors most recently affecting the lake. An increase in lacustrine productivity (450–650AD ca), inferred from the positive trend in δ13C values of bulk carbonate, is related to medieval forest clearances and the associated nutrient budget changes. A negative trend in both the bulk carbonate and ostracode calcite δ18O values between approximately 1300 and 1500AD, is tentatively interpreted as due to a cooling in mean air temperature at the transition from the Medieval Warm Period to the Little Ice Age. Negative trends in bulk carbonate δ18O and δ13C values through the uppermost sediments, which have no equivalent in ostracode calcite isotopic values, are concomitant with the recent onset of eutrophication in the lake. Isotopic disequilibrium during calcite precipitation, probably due to kinetic factors in periods of high productivity is postulated as the mechanism to explain the associated negative isotopic trends, although the effect of a shift of the calcite precipitation towards the warmer months cannot be excluded.

calcite ostracodes climate stable isotopes Lake Neuchåtel Switzerland Little Ice Age Holocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravena, R., B. G. Warner, G. M. MacDonald & K. I. Hanf, 1992. Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quat. Res. 37: 333–345.Google Scholar
  2. Bond, G.,W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priori, H. Cullen, I. Hajdes & G. Bonani, 1997. A Pervasive Millennialscale Climate Cycle in the North Atlantic: The Holocene and Late Glacial Record. Science 278: 1257–1266.Google Scholar
  3. Cerling, T. E. & J. Quade, 1993, Stable Carbon and Oxygen Isotopes in Soil Carbonates. In Swart P.K., K. C. Lohmann, J. McKenzie& S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington: pp. 217–231.Google Scholar
  4. Charef, A. & S. M. F. Sheppard, 1984. Carbon and oxygen isotope analysis of calcite or dolomite associated with organic matter. Isotope Geoscience 2: 325–333.Google Scholar
  5. Chondrogianni, C., 1992. Stabile KohlenstoffIsotope in hochproduktiven Litoralfl¨achen des Bodensees-Indikation f¨ur die Kopplung physikalischer, biologischer und geochemischer Prozesse in KohlenstoffKreislauf. Ph.D. Thesis, Heidelberg Geowiss. Abh. 61, RuprechtKarlsUniversit ¨at.Google Scholar
  6. Coplen, T. B., C. Kendall & J. Hopple, 1983. Comparison of stable isotope reference samples. Nature 302: 236–238.Google Scholar
  7. Dansgaard, W., 1964. Stable isotope in precipitation. Tellus XVI: 438–468.Google Scholar
  8. Dean, W.E. & M. Stuiver, 1993, Stable carbon and oxygen isotope studies of the sediments of Elk Lake, Minnesota. In Bradbury J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in NorthCentral United States. Geological Society of America, Boulder: pp. 163–180.Google Scholar
  9. Dettman, D. L., A. J. Smith, D. K. Rea, T. C. Moore, Jr. & K. C. Lohmann, 1995. Glacial Meltwater in Lake Huron during Early Postglacial Time as Inferrred from SingleValve Analysis of Oxygen Isotopes in Ostracodes. Quat. Res. 43: 297–310.Google Scholar
  10. Filippi, M. L., P. Lambert, J. C. Hunziker & B. Kubler, in press. Monitoring detrital input and resuspension effects on sediment trap material using mineralogy and stable isotopes (_18O and _13C): the case of Lake Neuchatel (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol.Google Scholar
  11. Friedman, I. & J. R. O'Neil, 1977, Compilation of stable isotope fractionation factors of geochemical interest. In Fleisher M. (ed), Data of Geochemistry. U.S. Geol. Surv. Prof. Paper, 440KK.Google Scholar
  12. Fritz, P. & S. Poplawski, 1974. 18Oand13Cin the shells of freshwater molluscs and their environments. Earth and planet. Sci. Lett. 24: 91–98.Google Scholar
  13. Fritz, P., T. W. Anderson & C. F. M. Lewis, 1975. LateQuaternary Climatic Trends and History of Lake Erie from Stable Isotope Studies. Science 190: 267–269.Google Scholar
  14. Fronval, T., N. B. Jensen & B. Buchardt, 1995. Oxygen isotope disequilibrium precipitation of calcite in Lake Arresø, Denmark. Geology 23: 463–466.Google Scholar
  15. Gat, J. R. & G. S. Lister, 1995, The 'catchment effect' on the isotopic composition of lake waters; its importance in palaelimnological interpretations. In Frenzel B. (ed), Problems of stable isotopes in treerings, lake sediments and peatbogs as climatic evidence for the Holocene. Akademie der Wissenschaften und der Literatur, Mainz, 1–15.Google Scholar
  16. Gonfiantini, R., 1986, Environmental isotopes in lake studies. In Fritz P. & J.C. Fontes (eds), Handbook of environmental isotope geochemestry. Vol. 2. The terrestrial environment. Elsiever, Amsterdam, 113–168.Google Scholar
  17. Hedges, R. E. M., P. B. Pettitt, B. C. Ramsay & G. J. VanKlinken, 1997. Radiocarbon dates from the Oxford AMS System: Archeometry Datelist 24. Archeometry 39: 445–471.Google Scholar
  18. Hollander, D. J., 1989. Carbon and Nitrogen Isotopic Cycling and Organic Geochemistry of Eutrophic Lake Greifen: Implications for preservation and accumulation of ancient organic carbonrich sediments. Ph.D. Thesis, Mitt. geol. Inst. ETH u. Univ. Z¨urich, 279.Google Scholar
  19. Holzhauser, H. P., 1988. Methoden zur Rekonstruktion von Gletscherschwankungen. Die Alpen 64: 135–165.Google Scholar
  20. H°akansson, S., 1985. A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to postglacial environmental conditions. Quat. Sci. Rev. 4: 135–146.Google Scholar
  21. Jornod, G., 1985–94. Observations m´et´eorologique faites en 1984–93 `a l'Observatoire cantonal de Neuchatel. Bull. Soc. neuch. Sci. natur., Vol. 108–117, Observatoire cantonal de Neuchatel.Google Scholar
  22. Keeling, C. D., W. G. Mook & P. P. Tans, 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277: 121–123.Google Scholar
  23. Keigwin, L. D., 1996. The Little Ice Age andMedievalWarm Period in the Sargasso Sea. Science 274: 1504–1508.Google Scholar
  24. Kelts, K., U. Briegel, K. Ghilardi & K. Hs¨u, 1986. The limnogeologyETHcoring system. Schweizerische Zeitschrift f¨ur Hydrologie 48: 105–115.Google Scholar
  25. Kreutz, K. J., P. A. Mayewski, L. D. Meeker, M. S. Twickler, S. I. Whitlow & I. I. Pittalwala, 1997. Bipolar Changes inAtmospheric Circulation During the Little Ice Age. Science 277: 1294–1296.Google Scholar
  26. Lambert, P., 1997. La s´edimentation dans le Lac Neuchatel (Suisse): processus actuels et reconstitution pal´eoenvironnementale de 1500BP `a nos jours. Ph.D. Thesis, Neuchatel.Google Scholar
  27. Lister, G. S., 1988a. A 15.000Year Isotopic Record from Lake Z¨urich of deglaciation and climatic change in Switzerland. Quat. Res. 29: 129–141.Google Scholar
  28. Lister, G. S., 1988b, Stable isotopes from lacustrine ostracoda as tracers for continental paleoenvironments. In DeDeckker P., J.P. Colin & J.P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, 201–218.Google Scholar
  29. Lister, G. S., 1989. Reconstruction of paleo air temperature changes from oxygen isotopic records in Lake Z¨urich: the significance of seasonality. Ecologae geol. Helv. 82: 219–234.Google Scholar
  30. L¨udi,W., 1935. Das grosse Moos im westschweizerischen Seelande und die Geschichte seiner Entstehung. Ver¨off. Botan. Inst. R¨ubel Z¨urich, 11, Bern, 344 pp.Google Scholar
  31. McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. Journal of chemical physics 18: 849–857.Google Scholar
  32. McKenzie, J. A., 1982, Carbon13 Cycle in Lake Greifen: A Model forRestrictedOcean Basins. In Schlanger S.O. & M.B. Cita (eds), Nature and Origin of Cretaceous Carbonrich Facies. Academic Press, London: 197–207.Google Scholar
  33. McKenzie, J. A., 1985, Carbon isotope and productivity in the lacustrine and marine environment. In Stumm W. (ed), Chemical processes in lakes. WileyInterscience, New York: pp. 99–118.Google Scholar
  34. McKenzie, J. A. & D. J. Hollander, 1993, OxygenIsotope Record in Recent Carbonate Sediments from Lake Greifen, Switzerland (1750–1986): Application of Continental Isotopic Indicator for Evaluation of Changes in Climate and Atmospheric Circulation Patterns. In Swart P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), ClimateChange in Continental Isotopic Records.American Geophysical Union, Washington: pp. 101–111.Google Scholar
  35. M¨uller, I. & G. Z¨otl, 1980. Karstydrologishe Untersuchungen mitnat¨urlichen und k¨unstlichen Tracern im Neuenburger Jura (Schweiz). Steir. Beitr. z. Hydrogeologie 32.Google Scholar
  36. Niessen, F., 1987. Sedimentologische, geophysikalische und geochemische Untersuchungen zur Entstehung und Ablagerungsgeschichte des Luganersees (Schweiz). Ph.D. Thesis, ETH Z¨urich.Google Scholar
  37. Niklaus, T. R., G. Bonani, M. Simonius, M. Suter & W. W¨olfli, 1992. Programm CalibETH. Radiocarbon 34: 483–492.Google Scholar
  38. O'Brien, S. R., P. A. Mayewski, L. D. Meeker, D. A. Meese, M. S. Twickler & S. I. Whitlow, 1995. Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core. Science 270: 1962–1964.Google Scholar
  39. Oana, S. & E. E. Deevey, 1960. Carbon 13 in lake waters, and its possible bearing on paleolimnology. Am. J. Sci. 258A, Bradley vol.: 253–272.Google Scholar
  40. OFPE, 1987. Lac de Neuchatel: Etude des affluents. 44S, Office f´ed´eral de l'´environnement.Google Scholar
  41. Oyama, M. & H. Takehara, 1967. RevisedMunsell SoilColor Charts.Google Scholar
  42. Pfister, C., 1988. Klimageschichte der Schweiz: 1525–1860: das klima der Schweiz von 1525–1860 und seine Bedeutung in der Geschichte von Bev¨olkerung und Landwirtschaft. Academica Helvetica, 6, 163 pp.Google Scholar
  43. Rozanski, K., L. Aragu´asAragu ´as & R. Gonfiantini, 1993, Isotopic Patterns in Modern Global Precipitation. In Swart P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington: 1–36.Google Scholar
  44. Schelske, C. L. & D. A. Hodell, 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol. Oceanogr. 36: 961–975.Google Scholar
  45. Schotterer, U., T. Stocker, J. Hunziker, P. Buttet & J.P. Tripet, 1995. Isotope in Wasserkreislauf. Ein neues eidgen¨ossisches Messnetz. Gas, Wasser, Abwasser 9/95 (75. Jahrgang): 1–8.Google Scholar
  46. Schwalb, A., 1992. Die Sedimente des Lac de Neuchatel (Schweiz): Rekonstruktion sp¨atund postglazialer Klimaund Umweltver¨anderungen. Ph. D. Thesis, Neuchatel.Google Scholar
  47. Schwalb, A., G. Lister & K. Kelts, 1994. Ostracode carbonate _18Oand _13Csignatures of hydrological and climatic changes affecting Lake Neuchatel, Switzerland, since the latest Pleistocene. J. Paleolimnol. 11: 3–17.Google Scholar
  48. SerreBachet, F. & J. Guiot, 1985, Summer temperature changes from tree rings in the Mediterranean area during the last 800 years. In Berger W.H. & L.D. Labeyrie (eds), Abrupt climatic change. Evidence and implications. D. Reidel, Dordrecht: pp. 89–97.Google Scholar
  49. Siegenthaler, U. & H. Oeschger, 1980. Correlation of 18O in precipitation with temperature and altitude. Nature 285: 314–317.Google Scholar
  50. Sollberger, H., 1974. Le lac de Neuchatel (Suisse). Ses eaux, ses s´ediments, ses courants souslacustres. Ph.D. Thesis, Neuchatel.Google Scholar
  51. Stuiver, M., 1970. Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.Google Scholar
  52. Stuiver, M., P.M. Grootes & T. F. Braziunas, 1995. The GISP2 _18O Climate Record of the Past 16 500 Years and the Role of the Sun, Ocean, and Volcanoes. Quat. Res. 44: 341–354.Google Scholar
  53. Swart, P. K., S. J. Burns & J. J. Leder, 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. 86: 89–96.Google Scholar
  54. Thierrin, J., 1990. Contribution `a l'´etude des eaux souterraines de la r´egion de Fribourg (Suisse occidentale). 3ème cycle Thesis, Universit´e de Neuchatel.Google Scholar
  55. von Grafenstein, U., H. Erlenkeuser, J. M¨uller & A. KleinmannEisenmann, 1992. Oxygen Isotope Records of Benthic Ostracods in Bavarian Lake Sediments-Reconstruction of Late and Post Glacial Air Temperature. Naturwissenschaften 79: 145–152.Google Scholar
  56. Wetzel, R. G., 1983. Limnology. Saunders College, FortWorth, 767 pp.Google Scholar
  57. Wohlfarth, B. & B. Amman, 1991, The History of the Aar River and the Forealpine Lakes inWestern Switzerland. In Gregory L. K., J. B. Thornes & L. Stakel (eds), Fluvial Processes in the temperate Zone in the last 15000 yrs. J. Wiley, NewYork: pp. 301–318.Google Scholar
  58. Wright, R. F., A. Matter, M. Schweingruber & U. Siegenthaler, 1980. Sedimentation in Lake Biel, an eutrophic hardwater lake in northwestern Switzerland. Schweiz. Z. Hydrol. 42: 101–126.Google Scholar
  59. Xia, J., E. Ito & D. R. Engstrom, 1997. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation. Geoch. Cosmoch. Acta 61: 377–382.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M.L. Filippi
    • 1
  • P. Lambert
    • 2
  • J. Hunziker
    • 1
  • B. Kübler
    • 2
  • S. Bernasconi
    • 3
  1. 1.Institut de Minéralogie et PéBFSH2LausanneSwitzerland
  2. 2.Institut de GéologieLimnocéaneNeuchâtelSwitzerland
  3. 3.Geologisches Institut, ETH-ZentrumEidgenössische Technische HochschuleZürichSwitzerland

Personalised recommendations