Advertisement

Journal of Computer-Aided Molecular Design

, Volume 12, Issue 4, pp 397–397 | Cite as

Comparative molecular field analysis of artemisinin derivatives: Ab initio versus semiempirical optimized structures

  • Somsak Tonmunphean
  • Sirirat Kokpol
  • Vudhichai Parasuk
  • Peter Wolschann
  • Rudolf H. Winger
  • Klaus R. Liedl
  • Bernd M. Rode
Article

Abstract

Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using these optimized geometries, the CoMFA results derived from the HF/3-21G method are found to be usually but not drastically better than those from AM1. Additional calculations were performed to investigate the electrostatic field difference using the Gasteiger and Marsili charges, the electrostatic potential fit charges at the AM1 level, and the natural population analysis charges at the HF/3-21G level of theory. For the HF/3-21G optimized structures no difference in predictability was observed, whereas for AM1 optimized structures such differences were found. Interestingly, if ionic compounds are omitted, differences between the various HF/3-21G optimized structure models using these electrostatic fields were found.

AM1 method antimalarial drug CoMFA Hartree-Fock (HF) QSAR 

References

  1. 1.
    World Health Organization, Bull. WHO, 71 (1993) 281.Google Scholar
  2. 2.
    Butter, D., Maurice, J. and O'Brien, C., Nature, 386 (1997) 535.Google Scholar
  3. 3.
    Olliaro, P.L. and Trigg, P.I., Bull. WHO, 73 (1995) 565.Google Scholar
  4. 4.
    World Health Organization, WHO Drug Inf., 7 (1993) 7.Google Scholar
  5. 5.
    Mockenhaupt, F.P., Parasitol. Today, 11 (1995) 248.Google Scholar
  6. 6.
    Qinghaosu Antimalaria Coordinating Research Group, Chin. Med. J., 92 (1979) 811.Google Scholar
  7. 7.
    China Cooperative Research Group on Qinghaosu and its Derivatives as Antimalarials, J. Tradit. Chin. Med., 2 (1982) 9.Google Scholar
  8. 8.
    Klayman, D.L., Science, 228 (1985) 1049.Google Scholar
  9. 9.
    Luo, X.D. and Shen, C.-C., Med. Res. Rev., 7 (1987) 29.Google Scholar
  10. 10.
    Meshnick, S.R., Taylor, T.E. and Kamchonwongpaisan, S., Microbiol. Rev., 60 (1996) 301.Google Scholar
  11. 11.
    Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.Google Scholar
  12. 12.
    Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.Google Scholar
  13. 13.
    Leban, I. and Golic, L., Acta Pharm. Jugosl., 38 (1988) 71.Google Scholar
  14. 14.
    Posner, G.H. and Oh, C.H., J. Am. Chem. Soc., 114 (1992) 8328.Google Scholar
  15. 15.
    Posner, G.H., Wang, D., Cumming, J.N., Oh, C.H., French, A.N., Bodley, A.L. and Shapiro, T.A., J. Med. Chem., 38 (1995) 2273.Google Scholar
  16. 16.
    Jiang, H.-L., Chen, K.-X., Wang, H.-W., Tang, Y., Chen, J.-Z. and Ji, R.-Y., Acta Pharmacol. Sin., 15 (1994) 481.Google Scholar
  17. 17.
    Avery, M.A., Gao, F., Chong, W.K.M., Mehrotra, S. and Milhous, W.K., J. Med. Chem., 36 (1993) 4264.Google Scholar
  18. 18.
    Kim, K.H., In Dean, P.M. (Ed.) Molecular Similarity in Drug Design, London, 1995, pp. 291–331.Google Scholar
  19. 19.
    Kroemer, R.T. and Hecht, P., J. Comput.-Aided Mol. Design, 9 (1995) 396.Google Scholar
  20. 20.
    Horwitz, J.P., Massova, I., Wiese, T.E., Besler, B.H. and Corbett, T.H., J. Med. Chem., 37 (1994) 781.Google Scholar
  21. 21.
    Hannongbua, S., Lawtrakul, L., Sotriffer, C.A. and Rode, B.M., Quant. Struct.–Act. Relatsh., 15 (1996) 1.Google Scholar
  22. 22.
    Lin, A.J., Klayman, D.L. and Milhous, W.K., J. Med. Chem., 30 (1987) 2147.Google Scholar
  23. 23.
    Lin, A.J., Li, L.Q., Klayman, D.L., George, C.F. and Anderson, J.L.F., J. Med. Chem., 33 (1990) 2610.Google Scholar
  24. 24.
    Lin, A.J. and Miller, R.E., J. Med. Chem., 38 (1995) 764.Google Scholar
  25. 25.
    Pu, Y.M., Torok, D.S., Ziffer, H., Pan, X.-Q. and Meshnick, S.R., J. Med. Chem., 38 (1995) 4120.Google Scholar
  26. 26.
    Avery, M.A., Mehrotra, S., Johnson, T.L., Bonk, J.D., Vromn, J.A. and Miller, R., J. Med. Chem., 39 (1996) 4149.Google Scholar
  27. 27.
    SYBYL Molecular Modeling Software, v. 6.3, Tripos Associates Inc., St. Louis, MO, U.S.A., 1996.Google Scholar
  28. 28.
    GAUSSIAN 94, Gaussian Inc., Pittsburgh, PA, U.S.A., 1995.Google Scholar
  29. 29.
    Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.Google Scholar
  30. 30.
    Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.Google Scholar
  31. 31.
    Reed, A.E. and Weinhold, F.J., J. Am. Chem. Soc., 108 (1986) 3586.Google Scholar
  32. 32.
    Stewart, J.J.P., MOPAC 6.0, Quantum Chemical Program Exchange 455, 1990.Google Scholar
  33. 33.
    Clark, M., Cramer, R.D. and VanOpdenbosch, N., J. Comput. Chem., 10 (1989) 982.Google Scholar
  34. 34.
    Dunn, W.J., Wold, S., Edlund, U., Hellberg, S. and Gasteiger, J., Quant. Struct.–Act. Relatsh., 3 (1984) 131.Google Scholar
  35. 35.
    Geladi, P., J. Chemometrics., 2 (1988) 231.Google Scholar
  36. 36.
    Kubinyi, H. and Abraham, U., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 712–728.Google Scholar
  37. 37.
    Cramer, R.D., DePriest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 443–485.Google Scholar
  38. 38.
    Lin, A.J., Li, L.-Q., Andersen, S.L. and Klayman, D.L., J. Med. Chem., 35 (1992) 1639.Google Scholar
  39. 39.
    Kroemer, R.T., Hecht, P. and Liedl, K.R., J. Comput. Chem., 17 (1996) 1296.Google Scholar
  40. 40.
    Folkers, G., Merz, A. and Rognan, D., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 583–618.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Somsak Tonmunphean
    • 1
  • Sirirat Kokpol
    • 1
  • Vudhichai Parasuk
    • 1
  • Peter Wolschann
    • 2
  • Rudolf H. Winger
    • 3
  • Klaus R. Liedl
    • 3
  • Bernd M. Rode
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Institute of Theoretical Chemistry and Radiation ChemistryUniversity of ViennaAustria
  3. 3.Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations