Natural Hazards

, Volume 17, Issue 1, pp 77–97

Slope Instability Zonation: a Comparison Between Certainty Factor and Fuzzy Dempster–Shafer Approaches

  • E. Binaghi
  • L. Luzi
  • P. Madella
  • F. Pergalani
  • A. Rampini
Article

Abstract

This paper presents a comparison between two methodologies for the evaluation of slope instability and the production of instability maps, using a probabilistic approach and a hybrid possibilistic and credibilistic approach. The first is the Certainty Factor method, and the second is based on Fuzzy Logic integrated with the Dempster–Shafer theory. These methodologies are applied to the 1 : 50,000 scale Fabriano (Marche, Italy) geological map sheet. The results are represented as histograms where the accuracy of the prediction is shown, and the comparison of the results of the methods is discussed.

landslide instability certainty factor fuzzy logic Dempster–Shafer theory geographic information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binaghi E. and Rampini A.: 1993, Fuzzy decision making in the classification of multisource remote sensing data, Optical Eng. 32, 1193‐1203.Google Scholar
  2. Binaghi, E., Brivio, P. A., Ghezzi, P., Rampini, A., and Zilioli, E.: 1996, A Hybrid Approach to Soft Land Cover Mapping, in E. Binaghi, P. A. Brivio, A. Rampini, and R. Schowengerdt, (eds), Non Conventional Pattern Analysis in Remote Sensing, Pattern Recognition Lett. 17, 1399‐1410.Google Scholar
  3. Brabb, E. E. Pompeyan, E. H., and Bonilla, M. G.: 1972, Landslide susceptibility in San Mateo County, California, US Geological Survey Miscellaneus Field Studies Map, MF-360, scale 1:62.500.Google Scholar
  4. Brundsen, D. Doornkamp, J. C., Fookes, P. G., Jones, D. K. C., and Kelly, J. M. H.: 1975, Large scale geomorphological mapping and highway engineering design, Quart. J. Eng. Geol. 8, 227‐253.Google Scholar
  5. Burrough, P. A.: 1986, Principle of Geographical Information Systems for Land Resources Assessment, Clarendon Press, Oxford.Google Scholar
  6. Carrara, A.: 1983, Multivariate models for landslides hazard evaluation, Mathl. Geol. 15(3), 403‐427.Google Scholar
  7. Carrara, A.: 1988, Landslide hazard mapping by statistical methods. A 'black box' approach, Workshop on Natural Disaster in European Mediterranean Countries, Perugia, Italy, pp. 205‐224.Google Scholar
  8. Carrara, A.: 1992, Landslide hazard assessment, Proc. 1st Simposio Internacional sobre sensores Remotos Y Sistema de informacion geografica (SIG) para el estudio de Riesgos Naturales, Bogota', Colombia, pp. 329‐355.Google Scholar
  9. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: 1990, Geographic information systems and multivariate models in landslide hazard evaluation, Alps 90 Alpine landslide practical seminar, 6th Int. Conf. and field Workshop on Landslides. Aug. 31‐Sept 12, 1990, Milano, Italy, pp. 17‐28.Google Scholar
  10. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: 1991, Gis techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms 16(5), 427‐455.Google Scholar
  11. Carrara, A., Catalano, E., Sorriso Valvo, M., Reali, C., and Osso, I.: 1978, Digital terrain analysis for land evaluation, Geologia Applicata ed Idrogeologia, 13, 69‐127.Google Scholar
  12. Carrara, A., Pugliese Carratelli, E., and Merenda, L.: 1977, Computer based data bank and and statistical analysis of slope stability phenomena, Zeitschrift fur Geomorphologie N. F. 21(2), 187‐222.Google Scholar
  13. Chung, C. F. and Fabbri, A. G.: 1993, The representation of geoscience information for data integration, Non-renewable Resources 2(2), 122‐139.Google Scholar
  14. Congalton, R. G.: 1991, A review of Assessing the accuracy of classification of remotely sensed data, Remote Sens. Environ. 37, 35‐46.CrossRefGoogle Scholar
  15. Corominas, J., Baeza, C., and Saluena, I.: 1992, The influence of geometrical slope characteristics and land use on the developement of shallow landslides, Proc. 6th Int. Symp. on Landslides, Christchurch, New Zeland, 2, 919‐924.Google Scholar
  16. Gonzalez, A. J.: 1992, Avalanche risk evaluation at Utica, Colombia, Proc. 1er Simposio Internacional sobre sensores Remotos Y Sistema de informacion geografica (SIG) para el estudio de Riesgos Naturales, Bogota, Colombia, pp. 356‐378.Google Scholar
  17. Heckerman: 1986, Probabilistic interpretation of MYCIN's certainty factors. In L. N. Kanal and J. F. Lemmer (eds), Uncertainty in Artificial Intelligence, New York, Elsevier, pp. 298‐311.Google Scholar
  18. ILWIS: 1993, ILWIS 1.4: User's Manual, International Institute for Aerospace survey and Earth Sciences (ITC). Enschede, The Netherlands, August 1993.Google Scholar
  19. Ives, J. D. and Messerli, B.: 1981, Mountain hazard mapping in Nepal. Introduction to an applied mountain research project, Mountain Research and Developement 1(3‐4), 223‐230.Google Scholar
  20. Lessing, P., Messina, C. P., and Fonner, R. F.: 1983, Landslide risk assessment, Environmental geology, 5(2), 92‐99.Google Scholar
  21. Lucini, P.: 1973, The potential landslide forecasting of the 'Argille Varicolori Scagliose' complex, IGM 174 IV SE Map, Savignano di Puglia (Campania). Geologia Applicata e Idrogeologia, VIII.Google Scholar
  22. Luzi, L. and Pergalani, F.: 1995a, Applications of statistical and GIS techniques to slope instability zonation and influence on lifelines. Seismology and Earhquake Engineering (SEE ‐ 2), Tehran.Google Scholar
  23. Luzi, L. and Pergalani, F.: 1995b, Slope instability zonation and influence on lifelines vulnerability by application of a GIS, Fifth International Conference on Seismic Zonation, Nizza.Google Scholar
  24. Luzi L. and Pergalani F.: 1996, A methodology for slope instability zonation using a probabilistic method, 6th Spanish Congress and International Conference on Environmental Geology and Land-Use Planning, Granada, Spagna.Google Scholar
  25. Malgot, J. and Mahr, T.: 1979, Engineering geological mapping of the West Carpathian landslide areas, Bull. Int. Ass. Eng. Geolo. 19, 116‐121.Google Scholar
  26. Neuland, H.: 1976, A prediction model for landslips, Catena 3, 215‐230.CrossRefGoogle Scholar
  27. Pedrycz, W.: 1990, Fuzzy sets in pattern recognition: Methodology and methods, Pattern Recognition 23, 121‐146.CrossRefGoogle Scholar
  28. Sabto, M.: 1991, Probabilistic Modelling Applied to Landslides in Central Colombia using Gis Procedures, Unpublished MSc thesis, ITC, Enschede, The Netherlands.Google Scholar
  29. Shafer, G.: 1976, A Mathematical Theory of Evidence, N. J.: Princeton Univ. Press, Princeton.Google Scholar
  30. Shortliffe, E. H. and Buchanan, G. G.: 1975, A model of inexact reasoning in medicine, Math. Biosci. 23, 351‐379.CrossRefGoogle Scholar
  31. Smets, P.: 1988, Belief functions, in P. Smets, E. H. Mamdani, D. Dubois, and H. Prade (eds), Non-Standard Logics for Automated Reasoning, Academic Press, London, pp. 253‐277.Google Scholar
  32. UNESCO: 1973‐1979, Annual Summary of Information on Natural Disasters, 1971‐75. Paris, Unesco.Google Scholar
  33. Varnes, D. J.: 1984, Hazard zonation: a review of principles and practice, Commission of Landslides of IAEG, UNESCO, Natural Hazards 3, 61.Google Scholar
  34. Yager R. and Filev, D. P.: 1990, Including probabilistic uncertainty in fuzzy logic controller modeling Using Dempster-Shafer Theory, IEEE Trans. Syst. Man Cyber 25, 1221‐1230.CrossRefGoogle Scholar
  35. Yen, J.: 1990, Generalizing the Dempster‐Shafer theory to fuzzy sets, IEEE Trans. Syst. Man Cyber 20, 559‐570.CrossRefGoogle Scholar
  36. Yin, K. L. and Yan, T. Z.: 1988, Statistical prediction model for slope instability of metamorphosed rocks, Proc. 5th Int. Symp. on Landslides, Lausanne, Switzerland, 2, 1269‐1272.Google Scholar
  37. Zadeh, L. A.: 1977, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Systems 1, 3‐28.CrossRefGoogle Scholar
  38. Zadeh L. A.: 1987, The concept of linguistic variable and its application to approximate reasoning, in R. R. Yager, S. Ovchinnikov, R. M. Tong, and H. T. Nguyen (eds), Fuzzy Sets and Applications, Wiley, New York, pp. 293‐329.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • E. Binaghi
    • 1
  • L. Luzi
    • 2
  • P. Madella
    • 1
  • F. Pergalani
    • 2
  • A. Rampini
    • 1
  1. 1.Istituto per le Tecnologie Informatiche Multimediali, Consiglio Nazionale delle RicercheMilanItaly
  2. 2.Istituto di Ricerca sul Rischio Sismico, Consiglio Nazionale delle RicercheMilanItaly

Personalised recommendations