Virus Genes

, Volume 16, Issue 1, pp 47–58

Evolution of Viral DNA-Dependent DNA Polymerases

  • Charles W. Knopf
Article

Abstract

DNA viruses as their host cells require a DNA-dependent DNA polymerase (Pol) to faithfully replicate their genomic information. Large eukaryotic DNA viruses as well as bacterial viruses encode a specific Pol equipped with a proofreading 3′-5′-exonuclease, and other replication proteins. All known viral Pol belong to family A and family B Pol. Common to all viral Pol is the conservation of the 3′-5′-exonuclease domain manifested by the three sequence motifs Exo I, Exo II, and Exo III. The polymerase domain of family A and B Pol is clearly distinguishable. Family A Pol share 9 distinct consensus sequences, only two of them are convincingly homologous to sequence motif B of family B Pol. The putative sequence motifs A, B, and C of the polymerase domain are located near the C-terminus in family A Pol and more central in family B Pol. Thus, family A Pol show a significant greater spacing between the Exo III motif and the Pol motif A that is especially extended in the case of the mitochondrial Pol γ. From each host and virus family whenever possible the consensus sequences of two distantly related polymerase species were aligned for assessment of phylogenetic trees, using both maximum parsimony and distance methods, and evaluated by bootstrap analysis. Three alternative methods yielded trees with identical major groupings. A subdivision of viral family B Pol was achieved resulting in a branch with Pol carrying out a protein-primed mechanism of DNA replication, including adenoviruses, bacteriophages and linear plasmids of plant and fungal origin. Archaebacterial Pol and cellular Pol ∈ were consistently found at the base of this branch. Another major branch comprised alpha- and delta-like viral Pol from mammalian herpesviruses, fish lymphocystis disease virus, insect ascovirus, and chlorella virus. Due to a lower branch integrity Pol of T-even bacteriophages, poxviruses, African swine fever virus, fish herpesvirus, and baculoviruses were not clearly resolved and placed in alternate groupings. A composite and rooted tree of family A and B Pol shows that viral Pol with a protein-priming requirement represent the oldest viral Pol species suggesting that the protein-primed mechanism is one of the earliest modes of viral DNA replication.

DNA viruses Herpesviridae Adenoviridae Ascoviridae Baculoviridae Phycodnaviridae cytoplasmic DNA viruses Iridoviridae Poxviridae African swine fever virus fish lymphocystis disease virus vaccinia virus bacterial viruses bacteriophages Myoviridae Siphoviridae Mycoviridae Podoviridae Tectiviridae family A DNA polymerases family B DNA polymerases DNA polymerase α DNA polymerase β DNA polymerase δ DNA polymerase ∈ DNA polymerase γ mitochondrial DNA polymerase DNA-dependent DNA polymerase protein-primed mechanism of DNA replication proofreading activity exonuclease domain polymerase domain molecular phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ito J. and Braithwaite D.K., Nucleic Acids Res 19, 4045-4057, 1991.Google Scholar
  2. 2.
    Braithwaite D.K. and Ito J., Nucleic Acids Res 21, 787-802, 1993.Google Scholar
  3. 3.
    Jung G., Leavitt M.C., Hsieh J.-C., and Ito J., Proc Natl Acad Sci USA 84, 8287-8291, 1987.Google Scholar
  4. 4.
    Bernad A., Zaballos A., Salas M., and Blanco L., EMBO J 6, 4219-4225, 1987.Google Scholar
  5. 5.
    Delaru M., Poch O., Tordo N., Moras D., and Argos P., Protein Eng 3, 461-467, 1990.Google Scholar
  6. 6.
    Zhu W. and Ito J., Nucleic Acids Res 22, 5177-5183, 1994.Google Scholar
  7. 7.
    Boulet A., Simon M., Faye G., Bauer G.A., and Burgers P.M.J., EMBO J 8, 1849-1854, 1989.Google Scholar
  8. 8.
    Knopf K.W. and Strick R., in Becker Y. and Darai G. (eds), Frontiers of Virology, Vol 3. Springer Verlag, Berlin, 1994, pp. 87-135.Google Scholar
  9. 9.
    Cullmann G., Hindges R., Berchtold M.W., and Hübscher U., Gene 134, 191-200, 1993.Google Scholar
  10. 10.
    Wang T.S.-F., Annu Rev Biochem 60, 513-552, 1991.Google Scholar
  11. 11.
    Joyce C.M. and Steitz T. A., Annu Rev Biochem 63, 777-822, 1994.Google Scholar
  12. 12.
    Bernad A., Blanco L., Lázaro J.M., Martin G., and Salas M., Cell, 59, 219-228, 1989.Google Scholar
  13. 13.
    Blanco L., Bernad A., and Salas M., Gene 112, 139-144, 1992.Google Scholar
  14. 14.
    Kühn F.J.P. and Knopf C.W., J Biol Chem 271, 29245-29254, 1996.Google Scholar
  15. 15.
    Simon M., Giot L., and Faye G., EMBO J 10, 2165-2170, 1991.Google Scholar
  16. 16.
    Freemont P.S., Ollis D.L., Steitz T.A., and Joyce C.M., Proteins 1, 66-73, 1986.Google Scholar
  17. 17.
    Ruscitti T., Polayes D.A., Karu A.E., and Linn S., J Biol Chem 267, 16806-16811, 1992.Google Scholar
  18. 18.
    Soengas M.S., Esteban J.A., Lázaro J.M., Bernard A., Blasco M.A., Salas M., and Blanco L., EMBO J 11, 4227-4237, 1992.Google Scholar
  19. 19.
    Reha-Krantz L.J. and Nonay R.L., J Biol Chem 260, 27100- 27108, 1993.Google Scholar
  20. 20.
    Stocki S.A., Nonay R.L., and Reha-Krantz L.J., J Mol Biol 254, 15-28, 1995.Google Scholar
  21. 21.
    Gibbs J.S., Weisshart K., Digard P., De Bruyn-Kops A., Knipe D.M., and Coen D.M., Mol Cell Biol 11, 4786-4795, 1991.Google Scholar
  22. 22.
    Wang Y., Woodward S., and Hall J.D., J. Virol. 66, 1814-1816, 1992.Google Scholar
  23. 23.
    McGeoch D.J. and Cook S., J Mol Biol 238, 9-22, 1994.Google Scholar
  24. 24.
    McGeoch D.J., Cook S., Dolan A., Jamieson F.E., and Telford E.A.R., J Mol Biol 247, 443-458, 1995.Google Scholar
  25. 25.
    Doolittle R.F., Anderson K.L., and Feng D., In The Hierarchy of Life (Fernholm B., Bremer K., and Jornvall H., eds.), Elsevier Science Publisher, Amsterdam, 73-85, 1989.Google Scholar
  26. 26.
    Felsenstein, J., PHYLIP (Phylogeny Inference Package) Version 3.572c, University of Washington, 1995.Google Scholar
  27. 27.
    Higgins D.G., Bleasby A.J., and Fuchs R., Comput Appl Biosci 8, 189-191, 1992.Google Scholar
  28. 28.
    Thompson J.D., Higgins D.G., and Gibson T.J., Nucleic Acids Res 22, 4673-4680, 1994.Google Scholar
  29. 29.
    Saitou N. and Nei M., Mol Biol Evol 4, 406-425, 1987.Google Scholar
  30. 30.
    Schwartz R.M. and Dayhoff M.O., In Atlas of Protein Sequence and Structure (Dayhoff M.O., ed.) National Biomedical Research Foundation, Washington D.C. Vol. 5,Supplement 3, 353-358, 1978.Google Scholar
  31. 31.
    Felsenstein J., Annu Rev Genet 22, 521-565, 1988.Google Scholar
  32. 32.
    Delius H. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-31, 1994.Google Scholar
  33. 33.
    Argos P., Tucker A.D., and Philipson L., Virology 149, 208- 216, 1986.Google Scholar
  34. 34.
    Wong S.W., Wahl A.F., Yuan P.-M., Arai N., Pearson B.E., Arai K., Korn D., Hunkapiller M.W., and Wang T.S.-F., EMBO J 7, 37-47, 1988.Google Scholar
  35. 35.
    Hwang C.B., Ruffner K.L., and Coen D.M., J Virol 66, 1774- 1776, 1992.Google Scholar
  36. 36.
    Freemont P.S., Friedman J.M., Beese L.S., Sanderson M.R., and Steitz T.A., Proc Natl Acad Sci USA 85, 8924-8928, 1988.Google Scholar
  37. 37.
    Derbyshire V., Freemont P.S., Sanderson M.R., Beese L.S., Friedman J.M., Joyce, C.M., and Steitz T.A., Science 240, 199- 201, 1988Google Scholar
  38. 38.
    Derbyshire V., Grindley N.D.F., and Joyce C.M., EMBO J 10, 17-24, 1991.Google Scholar
  39. 39.
    Blanco L., Bernad A., Blasco M.A., and Salas M., Gene (Amst), 100, 27-38, 1991.Google Scholar
  40. 40.
    Gibbs J.S., Chiou H., Bastow K., Cheng Y.C., and Coen D.M., Proc Natl Acad Sci USA 85, 6672-6676, 1988.Google Scholar
  41. 41.
    Copeland W.C. and Wang T.S.-F., J Biol Chem 268, 11028- 11040, 1993.Google Scholar
  42. 42.
    Copeland W.C. and Wang T.S.-F., J Biol Chem 268, 11041- 11049, 1993.Google Scholar
  43. 43.
    Eom S.H., Wang J., and Steitz, T.A., Nature 382, 278-281, 1996.Google Scholar
  44. 44.
    Hall J.D., Orth K.L., and Claus-Walker D., J Virol 70, 4816- 4818, 1996.Google Scholar
  45. 45.
    Polesky A.H., Dahlberg M.E., Benkovic S.J., Grindley N.D.F., and Joyce C.M., J Biol Chem 267, 8417-8428, 1992.Google Scholar
  46. 46.
    Blasco, M.A., Bernad A., Blanco L., and Salas M., J Biol Chem 266, 7904-7909, 1991.Google Scholar
  47. 47.
    Dorsky D.I. and Crumpacke C.S., J Virol 64, 1394-1397, 1990.Google Scholar
  48. 48.
    Marcy A.I., Hwang C.B.C., Ruffner K.L., and Coen D.M., J Virol 64, 5883-5890, 1990.Google Scholar
  49. 49.
    Dong Q., Copeland, W.C., and Wang T.S.-F., J Biol Chem 268, 24163-24174, 1993.Google Scholar
  50. 50.
    Blasco M.A., Lazaro J.M., Bernad A., Blanco L., and Salas M., J Biol Chem 267, 19427-19434, 1992.Google Scholar
  51. 51.
    Blasco M.A., Lazaro J.M., Blanco L., and Salas M., J Biol Chem 268, 16763-16770, 1993.Google Scholar
  52. 52.
    Lawyer F.C., Stoffel S., Saik R.K., Myambo K., Drummond R., and Gelfand D.H., J Biol Chem 264, 6427-6437, 1989.Google Scholar
  53. 53.
    Pellock B.J., Lu A., Meagher R.B., Weise M.J., and Miller L.K., Virology 216, 146-157, 1996.Google Scholar
  54. 54.
    Davison A.J., Virology 186, 9-14, 1992.Google Scholar
  55. 55.
    Bernard J. and Mercier A., Arch Virol 132, 437-442, 1993.Google Scholar
  56. 56.
    Woese C.R. and Fox G.E., Proc Natl Acad Sci USA 74, 5088- 5090, 1977.Google Scholar
  57. 57.
    Woese C.R., Microbiol Rev 51, 221-271, 1987.Google Scholar
  58. 58.
    Tidona, C.A. and Darai, G., Virology 230, 207-216, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Charles W. Knopf
    • 1
  1. 1.Forschungsschwerpunkt Genomforschung und Bioinformatik, Deutsches KrebsforschungszentrumHeidelbergFRG; E-Mail

Personalised recommendations