Advertisement

Journal of Paleolimnology

, Volume 19, Issue 4, pp 443–463 | Cite as

Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients

  • André F. Lotter
  • H. John B. Birks
  • Wolfgang Hofmann
  • Aldo Marchetto
Article

Abstract

Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of total phosphorus (TP) concentrations of 6 to 520 μg TP l-1 were studied for diatom, chrysophyte cyst, cladocera, and chironomid assemblages. Inference models for mean circulation log10 TP were developed for diatoms, chironomids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final transfer functions have coefficients of determination (r2, as assessed by cross-validation, of 0.79 (diatoms), 0.68 (chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP, whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong influence on their composition and abundance. Comparison with other diatom – TP inference models shows that our model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.

transfer functions WA-PLS total phosphorus trophic state eutrophication surface sediments Switzerland diatoms cladocera chironomids chrysophytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbeti, M. D., 1992. Relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Can. J. Fish. aquat. Sci. 49: 1171–1175.Google Scholar
  2. Agbeti, M. & M. Dickman, 1989. Use of lake fossil diatom assemblages to determine historical changes in trophic status. Can. J. Fish. aquat. Sci. 46: 1013–1021.Google Scholar
  3. Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution 8: 356–361.Google Scholar
  4. Anderson, N. J., 1995. Naturally eutrophic lakes: reality, myth or myopia? Trends in Ecology and Evolution 10: 137–138.Google Scholar
  5. Anderson, N. J. & B. V. Odgaard, 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275/276: 411–422.Google Scholar
  6. Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from pointsource eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.Google Scholar
  7. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining predisturbance nutrient conditions. Hydrobiologia 253: 357–366.Google Scholar
  8. Bayerisches Landesamt füur Wasserwirtschaft (ed.), 1993. Biologische Trophieindikation im Litoral von Seen. Materialien 31: 1–173.Google Scholar
  9. Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.Google Scholar
  10. Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwat. Biol. 34: 271–283.Google Scholar
  11. Bennion, H., T. E. H. Allott, D. T. Monteith, C. A. Duigan, E. Y. Haworth, N. J. Anderson & S. Juggins, 1996a. The Anglesey lakes, Wales, UK: changes in trophic status of three standing waters as inferred from diatom transfer functions and their implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 6: 81–92.Google Scholar
  12. Bennion, H., S. Juggins & N. J. Anderson, 1996b. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Envir. Sci. Technol. 30: 2004–2007.Google Scholar
  13. Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Archiv füur Hydrobiologie Beiheft, 15: 1–60.Google Scholar
  14. Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Rev. Palaeobot. Palynol. 83: 107–117.Google Scholar
  15. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical modelling of Quaternary science data. Technical Guide 5, Quat. Res. Assoc., Cambridge: 161–254.Google Scholar
  16. Bos, D. G., 1996. Cladocera and anostraca as paleolimnological indicators of lake-water conductivity. M. Sci. Thesis, Queen's University, Kingston: 73 pp.Google Scholar
  17. Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt Lake Res. 5: 1–15.Google Scholar
  18. Boucherle, M. M.&H. Züullig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.Google Scholar
  19. Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Spec. 171: 1–69.Google Scholar
  20. Brenner, M. & M. W. Binford, 1988. Relationship between concentration of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. aquat. Sci. 45: 294–300.Google Scholar
  21. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.Google Scholar
  22. Brundin, L., 1956. Die bodenfaunistischen Seetypen und ihre Anwendung auf die Süudhalbkugel. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.Google Scholar
  23. Carney, H. J., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.Google Scholar
  24. Carney, H. J. & C. D. Sandgren, 1983. Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, USA. Hydrobiologia 101: 195–202.Google Scholar
  25. Catalan, J. & E. J. Fee, 1994. Interannual variability in limnic ecosystems: origin, patterns, and predictability. In Margalef, R. (ed.), Limnology now: a paradigm of planetary problems. Elsevier Science B.V. 81–97.Google Scholar
  26. Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.Google Scholar
  27. Crisman, T. L. & D. R. Whitehead, 1978. Paleolimnological studies on small New England (USA) ponds. Part II. Cladoceran community response to trophic oscillations. Pol. Arch. Hydrobiol. 25: 75–86.Google Scholar
  28. Cronberg, G., 1986. Chrysophycean cysts and scales in lake sediments: a review. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 281–315.Google Scholar
  29. Cronberg, G. & C. D. Sandgren. 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 317–328.Google Scholar
  30. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1991. The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. Nord. J. Bot., 11: 231–242.Google Scholar
  31. Cumming, B. F., S. E. Wilson & J. P. Smol. 1993. Paleolimnological potential of chrysophyte cysts and scales, and sponge spicules as indicators of lake salinity. Int. J. Salt Lake Res. 2: 87–92.Google Scholar
  32. De Wolf, H., 1982. Method of coding of ecological data from diatoms for computer utilization. Med. Rijks Geol. Dienst 36: 95–98.Google Scholar
  33. Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAPSW). Environmental Monitoring and Ass. 31: 275–306.Google Scholar
  34. Duff, K. E. & J. P. Smol. 1991. Morphological description and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.). J. Paleolim. 5: 73–113.Google Scholar
  35. Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Press, Dordrecht, The Netherlands, 189 pp.Google Scholar
  36. Engstrom, D. R., E. B. Swain & J. C. Kingston, 1985. A palaeolimnological record of human disturbance from Harvey' Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol. 15: 261–288.Google Scholar
  37. Facher, E. & R. Schmidt, 1996. A siliceous chrysophycean cystbased pH transfer function for Central European lakes. J. Paleolim. 16: 275–321.Google Scholar
  38. Forsberg, C. & S.O. Ryding, 1980. Eutrophication parameters and trophic indices in 30 Swedish wastereceiving lakes. Arch. Hydrobiol. 89: 189–207.Google Scholar
  39. Frey, D. G., 1969. Evidence for eutrophication from remains of organisms in sediments. In Eutrophication: Causes, consequences, correctives. Academy of Natural Sciences, Washington D.C.: 594–613.Google Scholar
  40. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.Google Scholar
  41. Fritz, S. C., J. C. Kingston & D. R. Engstrom, 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol. 30: 1–23.Google Scholar
  42. Gibson, C. E., R. H. Foy & A. E. Bailey-Watts, 1996. An analysis of the total phosphorus cycle in some temperate lakes: the response to enrichment. Freshwat. Biol. 35: 525–532.Google Scholar
  43. Günther, J., 1983. Development of Grossensee (Holstein, Germany): variations in trophic status from the analysis of subfossil microfauna. Hydrobiologia 103: 231–234.Google Scholar
  44. Håkanson, L., 1992. Considerations on representative water quality data. Int. Revue ges. Hydrobiol., 77: 497–505.Google Scholar
  45. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  46. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Can. J. Fish. aquat. Sci. 53: 1–17.Google Scholar
  47. Harmsworth, R. V. & M. C. Whiteside, 1968. Relation of cladoceran remains in lake sediments to primary productivity of lakes. Ecology 49: 998–1000.Google Scholar
  48. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  49. Hofmann, G., 1994.Aufwuchs Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30: 1–241.Google Scholar
  50. Hofmann, W., 1971. Die postglaziale Entwicklung der Chironomidenund ChaoborusFauna (Dipt.) des Schöohsees. Arch. Hydrobiol. 40: 1–74.Google Scholar
  51. Hofmann, W., 1986a. Developmental history of the Großer Plöoner See and the Schöohsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol. 74: 259–287.Google Scholar
  52. Hofmann, W., 1986b. Chironomid Analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 715–727.Google Scholar
  53. Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.Google Scholar
  54. Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr., Palaeoclimatol., Palaeoecol. 62: 501–509.Google Scholar
  55. Hofmann, W., 1990. Sukzession der Cladocerenund Chironomidenfauna im Späatund Postglazial als Reaktion auf ÄAnderungen des Trophiegrades im Untersee (Kern US 8707). Ber. Röom.German. Kommission 71: 286–292.Google Scholar
  56. Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.Google Scholar
  57. Hofmann, W. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of Soppensee (Central Switzerland). J. Paleolim. submitted.Google Scholar
  58. Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response models. J. Veg. Sci. 4: 37–46.Google Scholar
  59. Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 36: 115–127.Google Scholar
  60. Jonasson, P. M., 1969. Bottom fauna and eutrophication. Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington D.C.: 274–305.Google Scholar
  61. Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fenn. 22: 57–90.Google Scholar
  62. Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.Google Scholar
  63. Kerfoot, W. C., 1978. Combat between copepods and their prey: Cyclops, Epischura and Bosmina. Limnol. Oceanogr. 23: 1098–1103.Google Scholar
  64. Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationship among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.Google Scholar
  65. Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.Google Scholar
  66. Kolkwitz, R., 1950. ÖOkologie der Saprobien. Über die Beziehungen der Wasserorganismen zur Umwelt. Schriftenreihe Verein für Wasser, Bodenund Lufthygiene 4: 64 pp.Google Scholar
  67. Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo bog, southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. Ser. A 155: 1–40.Google Scholar
  68. Krause-Dellin, D. & C. Steinberg, 1986. Cladocera remains as indicators of lake acidification. Hydrobiologia 143: 129–134.Google Scholar
  69. Krause, W., 1981. Characeen als Bioindikatoren f üur den Gewäasserzustand. Limnologica 13: 399–418.Google Scholar
  70. Lange-Bertalot, H., 1978. Diatomeen-Differentialarten anstelle von Leitformen: Ein geeignetes Kriterium der Gewäasserbelastung. Arch. Hydrobiol. 51: 393–427.Google Scholar
  71. Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia Beiheft 64: 285–304.Google Scholar
  72. Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and eutrophication: the limitingnutrient controversy. ASLO, Lawrence, Kansas: 3–13.Google Scholar
  73. Lindegaard, C., 1995. Classification of waterbodies and pollution. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and ecology of nonbiting midges. Chapman & Hall, London. 385–404.Google Scholar
  74. Lotter, A., 1988. Paläaoöokologische und paläaolimnologische Studie des Rotsees bei Luzern. Pollen-, grossrest-, diatomeen-und sedimentanalytische Untersuchungen. Diss. Bot. 124: 1–187.Google Scholar
  75. Lotter, A. F., 1989. Subfossil and modern diatom plankton and the paleolimnology of Rotsee (Switzerland) since 1850. Aquat. Sci. 51: 338–350.Google Scholar
  76. Lotter, A. F. The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene, in press.Google Scholar
  77. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997a Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  78. Lotter, A. F., M. Sturm, J. L. Teranes & B. Wehrli, 1997b. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquatic Sciences 59: in press.Google Scholar
  79. Lowe, R., 1974. Environmental requirements and pollution tolerances of freshwater diatoms. EPA6701474005, US EPA.Google Scholar
  80. Lund, J.W. G., 1969. Phytoplankton. Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington D.C.: 306–330.Google Scholar
  81. Maberly, S. C., M.A. Hurley, C. Butterwick, J. E. Corry, S. I. Heaney, A. E. Irish, G. H. M. Jaworski, J. W. G. Lund, C. S. Reynolds & J. V. Roscoe, 1994. The rise and fall of Asterionella formosa in the south basin of Windermere: analysis of a 45year series of data. Freshwat. Biol. 31: 19–34.Google Scholar
  82. Marchetto, A. & A. Lami, 1994. Reconstruction of pH by chrysophycean scales in some lakes of the southern Alps. Hydrobiologia 274: 83–90.Google Scholar
  83. Müuller, B., A. F. Lotter, M. Sturm & A. Ammann, The influence of catchment and geographic location on the water and sediment composition of 68 small circumalpine lakes. Aquatic Sciences, in press.Google Scholar
  84. Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophycea in Lake GribsØo. Folia Limnologica Scandinavica 8: 50–62.Google Scholar
  85. OCDE, 1982. Eutrophisation des eaux. Méethodes de surveillance, d'éevaluation et de lutte. OCDE, Paris.Google Scholar
  86. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.Google Scholar
  87. Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.Google Scholar
  88. Quinlan, R., J. P. Smol & R. I. Hall, Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. aquat. Sci., in press.Google Scholar
  89. Rast, W. & M. Holland, 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio 17: 2–12.Google Scholar
  90. Reavie, E. D., R. I. Hall & J. P. Smol, 1995. An expanded weighted-averaging model for phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolim. 14: 49–67.Google Scholar
  91. Rippey, B. & N. J. Anderson, 1996. Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Envir. Sci. Technol. 30: 1786–1788.Google Scholar
  92. Rosen, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.Google Scholar
  93. Rybak, M., I. Rybak & K. Nicholls. 1991. Sedimentary chrysophycean cyst assemblages as paleoindicators in acid sensitive lakes. J. Paleolim. 5: 19–72.Google Scholar
  94. Sæaether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2: 65–74.Google Scholar
  95. Sæaether, O. A., 1980. The influence of eutrophication on deep lake benthic invertebrate communities. Prog.Water Technol. 12: 161–180.Google Scholar
  96. Salden, N., 1978. Beitrag zur ÖOkologie der Diatomeen (Bacillariophyceae) des Süusswassers. Dechenia Beihefte 22: 1–238.Google Scholar
  97. Sanders, R.W., K. G. Porter & R. J. McDomough. 1985. Bacterivory by ciliates, microflagellates and mixotrophic algae: factors influencing particle ingestion. EOS, 66: 1314.Google Scholar
  98. Sandgren, C. D., 1981. Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyceae, Chrysophicota). Protistologica 16: 259–276.Google Scholar
  99. Sandgren, C. D., 1983. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19: 64–70.Google Scholar
  100. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 9–104.Google Scholar
  101. Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry & C. D. Campbell, 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143: 79–86.Google Scholar
  102. Schindler, D. W., 1987. Detecting ecosystem response to anthropogenic stress. Can. J. Fish. aquat. Sci. 44: 6–25.Google Scholar
  103. Schmäah, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SWGermany): implications for paleolimnological interpretation. J. Paleolim. 9: 99–108.Google Scholar
  104. Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.Google Scholar
  105. Smol, J. P., 1995. Application of Chrysophytes to problems in paleoecology. In Sandgren, C., J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 303–329.Google Scholar
  106. Stenson, J. A. E., 1976. Significance of predator influence on composition of Bosmina spp. populations. Limnol. Oceanogr. 21: 814–822.Google Scholar
  107. Stockner, J. G., 1971. Preliminary characterization of lakes in the Experimental Lakes Area, Northwestern Ontario, using diatom occurrences in sediments. J. Fish. Res. Bd Canada 28: 265–275.Google Scholar
  108. Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.Google Scholar
  109. Synerholm, C. C., 1979. The chydorid cladocera fauna from surface lake sediments inMinnesota and North Dakota. Arch. Hydrobiol. 86: 137–151.Google Scholar
  110. Tarapchak, S. J. & C. Nalewajko, 1986. Synopsis: phosphorus – plankton dynamics symposium. Can. J. Fish. aquat. Sci. 43: 416–419.Google Scholar
  111. ter Braak, C. J. F., 1987–1992. CANOCO – a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, New York: 95 pp.Google Scholar
  112. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.Google Scholar
  113. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  114. ter Braak, C. J. F., S. Juggins, H. J. B. Birks & H. van der Voet, 1993. Weighted averaging partial least squares regression (WAPLS): definition and comparison with other methods for species environment calibration. In Patil, G. P. & C. R. Rao (eds), Multivariate Environmental Statistics. Elsevier: 525–560.Google Scholar
  115. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.Google Scholar
  116. Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.Google Scholar
  117. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. aquat. Ecol. 28: 117–133.Google Scholar
  118. Vollenweider, R. W., 1950. ÖOkologische Untersuchungen von planktischen Algen auf experimenteller Grundlage. Schweiz. Z. Hydrol. 12: 193–262.Google Scholar
  119. Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Nonbiting Midges. Chapman & Hall, London: 405–422.Google Scholar
  120. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  121. Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. Int. 20: 51–70.Google Scholar
  122. Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. aquat. Sci. 52: 950–960.Google Scholar
  123. Warwick, W. F., 1980. Paleolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206: 1–117.Google Scholar
  124. Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.Google Scholar
  125. Whiteside, M. C., 1969. Chydorid (Cladocera) remains in surficial sediments of Danish lakes and their significance to paleolimnological interpretations. Mitt. Int. Ver. Limnol. 17: 193–201.Google Scholar
  126. Whiteside, M. C., 1970. Danish chydorid cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.Google Scholar
  127. Whiteside, M. C., 1983. The mythical concept of eutrophication. Hydrobiologia 103: 107–111.Google Scholar
  128. Wiederholm, T., 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Control Federation 52: 537–547.Google Scholar
  129. Wiederholm, T., 1984. Responses of aquatic insects to environmental pollution. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 508–557.Google Scholar
  130. Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.Google Scholar
  131. Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus Transfer function for alpine and prealpine lakes. Mem. Ist. ital. Idrobiol. 53: 85–99.Google Scholar
  132. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.Google Scholar
  133. Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: bodysize selection versus visibility selection. Ecology: 232–237.Google Scholar
  134. Zeeb, B. A., C. E. Christie, J. P. Smol, D. L. Findlay, H. J. Kling & H. J. B. Birks, 1994. Response of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Can. J. Fish. aquat. Sci. 51: 2300–2311.Google Scholar
  135. Züullig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.Google Scholar
  136. Züullig, H., 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the late Quaternary. J. Paleolim. 2: 23–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • André F. Lotter
    • 1
    • 2
  • H. John B. Birks
    • 3
    • 4
  • Wolfgang Hofmann
    • 5
  • Aldo Marchetto
    • 6
  1. 1.Geobotanical Institute, University of BernBernSwitzerland
  2. 2.Swiss Federal Institute of Environmental Science and Technology (EAWAG)DübendorfSwitzerland (e-mail
  3. 3.Botanical Institute, University of BergenBergenNorway
  4. 4.Environmental Change Research Centre, Dept. of GeographyUniversity College LondonLondonUK (e-mail
  5. 5.Max-Planck-Institut für LimnologiePlönGermany (e-mail
  6. 6.Consiglio Nazionale delle Ricerche, Istituto Italiano di IdrobiologiaVerbania PallanzaItaly (e-mail

Personalised recommendations