Advertisement

International Journal of Computer Vision

, Volume 22, Issue 3, pp 261–289 | Cite as

Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices

  • Q.-T. Luong
  • O.D. Faugeras
Article

Abstract

We address the problem of estimating three-dimensional motion, and structure from motion with an uncalibrated moving camera. We show that point correspondences between three images, and the fundamental matrices computed from these point correspondences, are sufficient to recover the internal orientation of the camera (its calibration), the motion parameters, and to compute coherent perspective projection matrices which enable us to reconstruct 3-D structure up to a similarity. In contrast with other methods, no calibration object with a known 3-D shape is needed, and no limitations are put upon the unknown motions to be performed or the parameters to be recovered, as long as they define a projective camera.

The theory of the method, which is based on the constraint that the observed points are part of a static scene, thus allowing us to link the intrinsic parameters and the fundamental matrix via the absolute conic, is first detailed. Several algorithms are then presented, and their performances compared by means of extensive simulations and illustrated by several experiments with real images.

camera calibration projective geometry Euclidean geometry Kruppa equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayache, N. 1990. Stereovision and Sensor Fusion. MIT Press.Google Scholar
  2. Basu, A. 1993. Active calibration: Alternative strategy and analysis. In Proc.of the Conf.on Computer Vision and Pattern Recognition, New-York, pp. 495–500.Google Scholar
  3. Brand, P., Mohr, R., and Bobet, P. 1993. Distorsions optiques: Correction dans un modele projectif. Technical Report RR-1933, INRIA.Google Scholar
  4. Coxeter, H. S. M. 1987. Projective Geometry. SpringerVerlag, second edition.Google Scholar
  5. Crowley, J., Bobet, P., and Schmid, C. 1993. Maintaining stereo calibration by tracking image points. In Proc.of the Conf.on Computer Vision and Pattern Recognition, New-York, pp. 483–488.Google Scholar
  6. Deriche, R. and Blaszka, T. 1993. Recovering and characterizing image features using an efficient model based approach. In Proc. International Conference on Computer Vision and Pattern Recognition.Google Scholar
  7. Deriche, R., Vaillant, R., and Faugeras, O. 1992. From Noisy Edges Points to 3D Reconstruction of a Scene: A Robust Approach and Its Uncertainty Analysis, Vol. 2, pp. 71–79. World Scientific. Series in Machine Perception and Artificial Intelligence.Google Scholar
  8. Dron, L. 1993. Dynamic camera self-calibration from controled motion sequences. In Proc.of the conf.on Computer Vision and Pattern Recognition, New-York, pp. 501–506.Google Scholar
  9. Du, F. and Brady, M. 1993. Self-calibration of the intrinsic parameters of cameras for active vision systems. In Proc.of the conf.on Computer Vision and Pattern Recognition, New-York, pp. 477–482.Google Scholar
  10. Fang, J. Q. and Huang, T. S. 1984. Some experiments on estimating the3Dmotion parameters of a rigid body from two consecutive image frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:545–554.Google Scholar
  11. Faugeras, O. D. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press.Google Scholar
  12. Faugeras, O. D. and Toscani, G. 1986. The calibration problem for stereo. In Proceedings of CVPR'86, pp. 15–20.Google Scholar
  13. Faugeras, O. D., Lustman, F., and Toscani, G. 1987. Motion and Structure from point and line matches. In Proc.International Conference on Computer Vision, pp. 25–34.Google Scholar
  14. Faugeras, O. D. and Maybank, S. J. 1990. Motion from point matches: Multiplicity of solutions. The International Journal of Computer Vision, 4(3):225–246, also INRIA Tech. Report 1157.Google Scholar
  15. Faugeras, O. D., Luong, Q.-T., and Maybank, S. J. 1992. Camera self-calibration: Theory and experiments. In Proc.European Conference on Computer Vision, Santa-Margerita, Italy, pp. 321–334.Google Scholar
  16. Garner, L. E. 1981. An Outline of Projective Geometry. Elsevier: North Holland.Google Scholar
  17. Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations. The John Hopkins University Press.Google Scholar
  18. Hartley, R. I. 1992. Estimation of relative camera positions for uncalibrated cameras. In Proc.European Conference on Computer Vision, pp. 579–587.Google Scholar
  19. Hartley, R. I. 1994a. An algorithm for self calibration from several views. In Proc.Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 908–912.Google Scholar
  20. Hartley, R. I. 1994b. Self-calibration from multiple views with a rotating camera. In Proc.European Conference on Computer Vision, Stockholm, Sweden, pp. 471–478.Google Scholar
  21. Horn, B. K. P. 1990. Relative orientation. The International Journal of Computer Vision, 4(1):59–78.Google Scholar
  22. Huang, T. S. and Faugeras, O. D. 1989. Some properties of the Ematrix in two view motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:1310–1312.Google Scholar
  23. Jazwinsky, A. M. 1970. Stochastic Processes and Filtering Theory. Academic Press: London.Google Scholar
  24. Kanatani, K. 1991. Computational projective geometry. Computer Vision, Graphics, and Image Processing.Image Understanding, 54(3).Google Scholar
  25. Kanatani, K. 1992. Geometric Computation for Machine Vision. Oxford university press.Google Scholar
  26. Kruppa, E. 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber.Akad.Wiss., Wien, math. naturw.Kl., Abt.IIa., 122:1939–1948.Google Scholar
  27. Kumar, R. and Hanson, A. 1990. Sensibility of the pose refinement problem to accurate estimation of camera parameters. In Proceedings of the International Conference on Computer Vision, Osaka, Japan, pp. 365–369.Google Scholar
  28. Kumar, R. V. R., Tirumalai, A., and Jain, R. C. 1989. A non-linear optimization algorithm for the estimation of structure and motion parameters. In Proc.International Conference on Computer Vision and Pattern Recognition, pp. 136–143.Google Scholar
  29. Longuet-Higgins, H. C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133–135.Google Scholar
  30. Luong, Q.-T. 1992. Matrice fondamentale et auto-calibration en vision par ordinateur. Ph. D. thesis, Universite de Paris-Sud, Orsay.Google Scholar
  31. Luong, Q.-T. and Faugeras, O. D. 1992. Self-calibration of a camera using multiples images. In Proc.International Conference on Pattern Recognition, Den Hag, The Netherlands, pp. 9–12.Google Scholar
  32. Luong, Q.-T. and Viéville, T. 1996. Canonic representations for the geometries of multiple projective views. Computer Vision and Image Understanding, 64(2):193–229.Google Scholar
  33. Luong, Q.-T. and Faugeras, O. D. 1994. An optimization framework for efficient self-calibration and motion determination. In Proc.International Conference on Pattern Recognition, Jerusalem, Israel, pp. A-248–A-252.Google Scholar
  34. Luong, Q.-T. and Faugeras, O. D. 1994. A stability analysis of the fundamental matrix. In Proc.European Conference on Computer Vision, Stockholm, Sweden, pp. 577–588.Google Scholar
  35. Luong, Q.-T. and Faugeras, O. D. 1996. The fundamental matrix: Theory, algorithms, and stability analysis. Intl.Journal of Computer Vision 7(1):43–76.Google Scholar
  36. Luong, Q.-T., Deriche, R., Faugeras, O. D., and Papadopoulo, T. 1993. On determining the fundamental matrix: Analysis of different methods and experimental results. Technical Report RR-1894, INRIAGoogle Scholar
  37. Maybank, S. J. 1990. The projective geometry of ambiguous surfaces. Proc.of the Royal Society London A, 332:1–47.Google Scholar
  38. Maybank, S. J. and Faugeras, O. D. 1992. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 8(2):123–151.Google Scholar
  39. Maybeck, P. S. 1979. Stochastic Models, Estimation and Control. Academic Press: London.Google Scholar
  40. Mundy, J. L. and Zisserman, A. (Eds.) 1992. Geometric Invariance in Computer Vision. MIT Press.Google Scholar
  41. Robert, L. 1993. Reconstruction de courbes et de surfaces par vision stéréoscopique. Applications a la robotique mobile. Ph. D. thesis, Ecole Polytechnique.Google Scholar
  42. Semple, J. G. and Kneebone, G. T. 1979. Algebraic Projective Geometry. Clarendon Press: Oxford, 1952 (Reprinted).Google Scholar
  43. Spetsakis, M. E. and Aloimonos, J. 1988. Optimal computing of structure from motion using point correspondances in two frames. In Proc.International Conference on Computer Vision, pp. 449–453.Google Scholar
  44. Trivedi, H. P. 1988. Can multiple views make up for lack of camera registration? Image and Vision Computing, 6(1):29–32.Google Scholar
  45. Tsai, R. Y. 1989. Synopsis of Recent Progress on Camera Calibration for 3D Machine Vision. In Oussama Khatib, John J. Craig, and Tomás Lozano-Pérez (Eds.), The Robotics Review. MIT Press: pp. 147–159.Google Scholar
  46. Tsai, R. Y. and Huang, T. S. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects wirth curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:13–27.Google Scholar
  47. Ullman, S. 1979. The Interpretation of Visual Motion. MIT Press.Google Scholar
  48. Vieville, T. 1994. Auto-calibration of visual sensor parameters on a robotic head. Image and Vision Computing, 12.Google Scholar
  49. Wampler, C. W., Morgan, A. P., and Sommese, A. J. 1988. Numerical continuation methods for solving polynomial systems arising in kinematics. Technical Report GMR-6372, General Motors Research Labs.Google Scholar
  50. Weng, J., Ahuja, N., and Huang, T. S. 1989. Optimal motion and structure estimation. In Proc.International Conference on Computer Vision and Pattern Recognition, pp. 144–152.Google Scholar
  51. Zhang, Z. and Faugeras, O. D. 1992. 3D Dynamic Scene Analysis. Springer-Verlag.Google Scholar
  52. Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. 1995. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal 78:87–119.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Q.-T. Luong
    • 1
  • O.D. Faugeras
    • 2
  1. 1.SRI InternationalMenlo ParkUSA
  2. 2.I.N.R.I.A.Sophia-AntipolisFrance

Personalised recommendations