Experimental Astronomy

, Volume 7, Issue 3, pp 191–207 | Cite as

T2L2 - Time transfer by Laser link: a new optical time transfer generation

  • P. Fridelance
  • E. Samain
  • C. Veillet


The T2L2 experiment allows the synchronisation of remote clocks on Earth, and the monitoring of a satellite clock with an accuracy in the 50 ps range. It is based on the propagation of light pulses in space which is better controlled than the radio waves propagation. Some new optical timer and the definition of a new time origin allow direct accurate time transfer without external calibration. The time equations and the uncertainty budget are presented so as to justify the announced performance. This optical time transfer associated to an ultra-stable clock in space has many scientific application as the study of some aspects of the gravitation.

Time transfer Laser-ranging ultra-stable clocks gravitation 


  1. [1]
    Fridelance P., Lexpirience LASSO,these de doctorat de physique de l'universite Paris 6,1994.Google Scholar
  2. [2]
    Fridelance P., Veillet C., Operation and data analysis in the LASSO experiment,Metrologia, 32, 27–33, 1995.Google Scholar
  3. [3]
    Veillet C., Fridelance P., Fraudy D., Boudon Y., Shelus P.J., Ricklefs R.L, Wiant J.R.: LASSO observations at Mc Donald (Texas, USA) and OCA/CERGA (Grasse, France). A preliminary analysis,Proc. 24 th Precise Time and Time Interval Meeting (PTII), Virginia, USA, pp. 113–120,1992.Google Scholar
  4. [4]
    Veillet C, Fridelance P.: Time transfer between USA and France through LASSO,Proc. 7 h Europeen Frequency and Time Forum (EFTF), Neuchftel, Suisse, pp. 6 37–640,1993.Google Scholar
  5. [5]
    Lewandowski W., Petit G., Beaumont F., Fridelance P., Gaignebet J., Grudler P., Veillet C., Wiant J.R., Klepczynski W.J.: Comparison of LASSO and GPS time transfers,Proc. 25 th PTTI Meeting, California, USA, pp. 357–365,1993Google Scholar
  6. [6]
    Lewandowski W., Thomas C., in proc. IEEE, 79, 991–1000,1991.CrossRefGoogle Scholar
  7. [7]
    Kirchner D., Two-way satellite time transfer via communication satellites,in proc. IEEE, 79, 983–990, 1991.CrossRefGoogle Scholar
  8. [8]
    Nau H., Hahn J., Bedricht S, Study on H-Maser in space,Draft final report, DLR Oberpfaffenhofen, Institute of Radio Frequency Technology, 1994.Google Scholar
  9. [9]
    Starker S., SappI E., Schafer W., Microwave links for precise time and frequency transfer betweencground and space-based clocks,in proc. 7 t k EFTF, 693–698, 1993.Google Scholar
  10. [10]
    Samain E. Le laser-Lune millimdtrique et Nouvelles mdthodes de datation optique,These de doctorat de l'Univeriste de Nice-Sophia Antipolis, 1995.Google Scholar
  11. [11]
    Petit G, Wolf P., Relativistic theory for picosecond time transfer in the vicinity of the Earth,Astronomy and Astrophysics, 286, 971–977,1994.Google Scholar
  12. [12]
    IAU, Information Bulletin 67,7,1992.Google Scholar
  13. [13]
    Samain E, Optical statistical timer,submitted to proc. IEEE, 1996.Google Scholar
  14. [14]
    Samain E., Mangin J.F., Detector studies for the millimetric Lunar-laser ranging,in proc. of the 9 t h international workshop on laser ranging instrumentation, 1994.Google Scholar
  15. [15]
    Bender P.L., Atmospheric refraction and satellite ranging,in proc. of the Symposium "Refraction of transatmospheric signals in geodesy ",117–125, 1992.Google Scholar
  16. [16]
    Allan D.W., Weiss M.A., Jespersen J.L., A frequency domain view of time domain characterisation of clocks and time and frequency distribution systems,45 e annual symposium on frequency control, 1991.Google Scholar
  17. [17]
    Laurent P., Santarelli G., Lea S., Ghezali S., Bahoura M., Simon E., Clairon A., Lemonde P., Reichel J., Michaud A., Salomon C., Cesium fountains and micro-gravity clocks,in proc. of the 25 th Rencontre de Moriond, ed. Frontieres, 1990.Google Scholar
  18. [18]
    Fridelance P. " Influence of the atmospheric turbulence on the uplink propagation in an optical time transfer ", submitted to Applied Optics, 1996.Google Scholar
  19. [19]
    Busca G., Bernier L.G., Silverstrin P., Feltham S., Gaygerov B.A., Tatarenkov V.M., in proc. of the 25 th FTMI meeting, 467–475, 1993.Google Scholar
  20. [20]
    Maleki L., Frequency standards from government laboratories over the next 25 years,in proc. of the 254 h PTTI meeting, 549–560, 1993.Google Scholar
  21. [21]
    Vessot R.F.C., Levine M.W., Test of relativistic gravitation with a space-borne hydrogen maser,Physical Review Letters 45, No. 26, 2081–2084, 1980f.CrossRefGoogle Scholar
  22. [221]
    Will C.M., Gravitation redshift measurements as tests of non-metric theories of gravity,Phys. Rev. D., 10, 2330–2337, 1974.CrossRefGoogle Scholar
  23. [23]
    Veillet C., SORT, Solar Orbit Relativity Test,A proposal in the discipline area of fundamental physics in response to ESA's call for mission concepts for the follow-up to horizon 2000, 1994.Google Scholar
  24. [24]
    Lebach D.E., Corey B.E., Shapiro I.I., Ratner M.I., Webber J.C., Rogers A.E.E., Davis J.L., Herring T.A., Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry,Physical Review Letters, 75, No. 8, 1995.Google Scholar
  25. [25]
    Bergmann P.G., Comments on the scalar-tensor theory,Int. J. Theor. Phys., 1, 25–36, 1968.Google Scholar
  26. [26]
    Wagoner R.V., Scalar-tensor theory and gravitational waves,Phys. Rev., D1, 3209–3216, 1970.Google Scholar
  27. [27]
    Nordtvedt K., Post-Newtonian metric for a general class of scalar-tensor theories and observational consequences,Astrophys. J., 161, 1059–1067, 1970.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • P. Fridelance
    • 1
  • E. Samain
    • 1
  • C. Veillet
    • 1
  1. 1.Observatoire de la Côte d'Azur / CERGA avenue CopemicGrasse

Personalised recommendations