Journal of Paleolimnology

, Volume 18, Issue 4, pp 395–420 | Cite as

Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate

  • André F. Lotter
  • H. John B. Birks
  • Wolfgang Hofmann
  • Aldo Marchetto


Diatom, chrysophyte cyst, benthic cladocera, planktonic cladocera, and chironomid assemblages were studied in the surface sediments of 68 small lakes along an altitudinal gradient from 300 to 2350 m in Switzerland. In addition, 43 environmental variables relating to the physical limnology, geography, catchment characteristics, climate, and water chemistry were recorded or measured for each lake. The explanatory power of each of these predictor variables for the different biological data-sets was estimated by a series of canonical correspondence analyses (CCA) and the statistical significance of each model was assessed by Monte Carlo permutation tests. A minimal set of environmental variables was found for each biological data-set by a forward-selection procedure within CCA. The unique, independent explanatory power of each set of environmental variables was estimated by a series of CCAs and partial CCAs. Inference models or transfer functions for mean summer (June, July, August) air temperature were developed for each biological data-set using weighted-averaging partial least squares or partial least squares. The final transfer functions, after data screening, have root mean squared errors of prediction, as assessed by leave-one-out cross-validation, of 1.37 °C (chironomids), 1.60 °C (benthic cladocera), 1.62 °C (diatoms), 1.77 °C (planktonic cladocera), and 2.23 °C (chrysophyte cysts).

transfer functions weighted-averagingpartial-least-squares summer temperatures surfacesediments modern training-sets Switzerland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arzet, K., 1987. Diatomeen als pH-Indikatoren in subrezenten Sedimenten von Weichwasserseen. Ph.D. Dissertation University of Innsbruck, 266 pp.Google Scholar
  2. Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Envir. Sci. Technol. 30: 2004–2007.Google Scholar
  3. Birks, H. J. B., 1992. Some reflections on the application of numerical methods in Quaternary palaeoecology. Publications of the Karelian Institute 102: 7–20.Google Scholar
  4. Birks, H. J. B., 1993. Quaternary palaeoecology and vegetation science – current contributions and possible future developments. Revue Palaeobot. Palynol. 79: 153–177.Google Scholar
  5. Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Revue Palaeobot. Palynol. 83: 107–117.Google Scholar
  6. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical modelling of Quaternary science data. Quat. Res. Assoc., Cambridge: 161–254.Google Scholar
  7. Birks, H. J. B., J.M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–278.Google Scholar
  8. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  9. Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Rep. Inst. Freshwat. Res. Drottningholm 30: 1–914.Google Scholar
  10. Brundin, L., 1956. Die bodenfaunistischen Seentypen und ihre Anwendbarkeit auf die Südhalbkugel. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.Google Scholar
  11. Charles, D. F., 1990. A checklist for describing and documenting diatom and chrysophyte calibration data sets and equations for inferring water chemistry. J. Paleolimnol. 3: 175–178.Google Scholar
  12. Crawley, M. J., 1993. GLIM for Ecologists. Blackwell Scientific Publications, Oxford.Google Scholar
  13. Cronberg, G., 1986. Chrysophycean cysts and scales in lake sediments: a review. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes. Aspects and Problems. Cambridge University Press, Cambridge: 281–315.Google Scholar
  14. Cwynar, L. C. & A. J. Levesque, 1995. Chironomid evidence for late-glacial climatic reversals in Maine. QR 43: 405–413.Google Scholar
  15. DeCosta, J. J., 1964. Latitudinal distribution of chydorid cladocera in the Mississippi valley, based on their remains in surficial lake sediments. Inv. Ind. Lakes and Streams 6: 65–101.Google Scholar
  16. Douglas, M. S. V. & J. P. Smol, 1995. Paleolimnological significance of observed distribution patterns of chrysophyte cysts in arctic pond environments. J. Paleolimnol. 13: 79–83.Google Scholar
  17. Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Publishers, Dordrecht, 189 pp.Google Scholar
  18. Facher, E. & R. Schmidt, 1996. A siliceous chrysophycean cystbased pH transfer function for Central European lakes. J. Paleolimnol. 16: 275–321.Google Scholar
  19. Flössner, D., 1972. Branchiopoda, Branchiura. Die Tierwelt Deutschlands 60: 1–501.Google Scholar
  20. Forester, R. M., 1987. Late Quaternary paleoclimate records from lacustrine ostracods. In Ruddiman, W. F. & H. E. Wright (eds), North America and adjacent oceans during the last deglaciation. Geol. Soc. Am. K-3: 261–276.Google Scholar
  21. Frey, D. G., 1958. The late-glacial cladoceran fauna of a small lake. Arch. Hydrobiol. 54: 209–275.Google Scholar
  22. Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Int. Revue ges. Hydrobiol. 44: 27–50.Google Scholar
  23. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecol. Palaeohydrol. J. Wiley & Sons, Chichester, 667–692.Google Scholar
  24. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolimnol. 1: 179–191.Google Scholar
  25. Fritz, S. C., 1996. Paleolimnological records of climatic change in North America. Limnol. Oceanogr. 41: 882–889.Google Scholar
  26. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  27. George, D. G. & G. P. Harris, 1985. The effect of climate on longterm changes in the crustacean zooplankton biomass of Lake Windermere, UK. Nature 316: 536–539.Google Scholar
  28. Hamilton, L. C., 1992. Regression with graphics. Brooks/Cole Publishing Co., Pacific Grove, 363 pp.Google Scholar
  29. Hann, B. J., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climatic change: A comment on Walker et al. (1991). Can. J. Fish. aquat. Sci. 49: 1274–1276.Google Scholar
  30. Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.Google Scholar
  31. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  32. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  33. Hofmann, W., 1971. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beih. 6: 1–50.Google Scholar
  34. Hofmann, W., 1986. Chironomid analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester, 715–727.Google Scholar
  35. Hofmann, W., 1987. Cladocera in space and time: Analysis of lake sediments. Hydrobiologia 14: 315–321.Google Scholar
  36. Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr., Palaeoclim., Palaeoecol. 62: 501–509.Google Scholar
  37. Hofmann, W., 1990. Weichselian chironomid and cladoceran assemblages from maar lakes. Hydrobiologia 214: 207–211.Google Scholar
  38. Hofmann, W., 1991. Stratigraphy of Chironomidae (Insecta: Diptera) and Cladocera (Crustacea) in Holocene and Wurm sediments from Lac du Bouchet (Haute Loire, France). Documents du C.E.R.L.A.T. 2: 363–386.Google Scholar
  39. Hofmann, W., 1993. Dynamics of a littoral Cladocera assemblage under the influence of climatic and water depth changes from Alleröd to Subboreal. Verh. int. Ver. Limnol. 25: 1095–1101.Google Scholar
  40. Huisman, J., H. Olff & L. F. M. Fresno, 1993. A hierarchical set of models for species response analysis. Journal of Vegetation Science 4: 37–46.Google Scholar
  41. Huntley, B. & I. C. Prentice, 1988. July temperatures in Europe from pollen data, 6000 years before present. Science 241: 687–690.Google Scholar
  42. Huntley, B.& I. C. Prentice, 1993. Holocene vegetation and climates of Europe. In Wright, H. E., J. E. Kutzbach, T. Webb, W. F. Ruddiman, F. A. Street-Perrott & P. J. Bartlein (eds), Global Climate since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 136–168.Google Scholar
  43. Imbrie, J. & N. G. Kipp, 1971. Anew micropalaeontological method for quantitative paleoclimatology: application to late Pleistocene Carribbean core V28-238. In Turekian, K. K. (ed.), The late Cenozoic Glacial Ages. Yale University Press, New Haven, 77–181.Google Scholar
  44. Iversen, J., 1944. Viscum, Hedera and Ilex as climatic indicators. Geologiska Föreningen i Stockholm Förhandlingar 66: 463–483.Google Scholar
  45. Jones, V. J. & S. Juggins, 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433–445.Google Scholar
  46. Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.Google Scholar
  47. Kowalyk, H. E., 1985. The larval cephalic setae in the Tanypodinae (Dipterae: Chironomidae) and their importance in generic determinations. Can. Ent. 117: 67–106.Google Scholar
  48. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae, 1–4. G. Fischer Verlag, Stuttgart.Google Scholar
  49. Levesque, A. J, F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.Google Scholar
  50. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multiproxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.Google Scholar
  51. Lieder, U., 1983. Introgression as a factor in the evolution of polytypical plankton Cladocera. Int. Revue ges. Hydrobiol. 68: 269–284.Google Scholar
  52. Livingstone, D. M. & F. Schanz, 1994. The effects of deep-water siphoning on a small, shallow lake: a long-term case study. Arch. Hydrobiol. 132: 15–44.Google Scholar
  53. Livingstone, D. M. & A. F. Lotter, 1997. The relationship between air and water temperature in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolimnol.: in press.Google Scholar
  54. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, in press. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolimnol.Google Scholar
  55. Manly, B. F. J., 1991. Randomization and Monte Carlo methods in biology. Chapman & Hall, London.Google Scholar
  56. Marchetto, A., 1995. Light-and electron microscopic evaluation of chrysophycean remains in surface samples of 62 lakes in the Alps and establishing a calibration set for environmental variables transfer functions. Report Österreichische Akademie der Wissenschaften, Institut f ür Limnologie Mondsee.Google Scholar
  57. Martens, H. & T. Naes, 1989. Multivariate calibration. J. Wiley Sons, Chichester.Google Scholar
  58. Meijering, M. P. D., 1983. On the occurrence of ‘arctic’ Cladocera with special reference to those along the Strait of Belle Isle (Québec, Labrador, Newfoundland). Int. Revue ges. Hydrobiol. 68: 885–893.Google Scholar
  59. Miller, A. J., 1990. Subset selection in regression. Chapman & Hall, London.Google Scholar
  60. Moller Pillot, K. M., 1984. De larven Newfoundland Chironomidae (Diptera), Part B (Orthocladiinae). Nederl. Faun. Meded. 2.Google Scholar
  61. Müller, B., A. F. Lotter, M. Sturm & A. Ammann, in press. The influence of catchment and geographic location on the water and sediment composition of 68 small circumalpine lakes. Aquat. Sci.Google Scholar
  62. Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, N. J. Anderson, F. Berge, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, J. C. Kingston I. Renberg, 1990. Diatom quality control and data handling. Phil. Trans. r. Soc. Lond. B 327: 257–261.Google Scholar
  63. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing tools for palaeotemperature reconstructions. J. Paleolimnol.: in press.Google Scholar
  64. Patalas, K., 1990. Diversity of the zooplankton communities in Canadian lakes as a function of climate. Verh. int. Ver. Limnol. 24: 360–368.Google Scholar
  65. Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the borealtundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.Google Scholar
  66. Pienitz, R., M. S.V. Douglas, J. P. Smol, P. Huttunen & J. Meriläinen, 1995a. Diatom, chrysophyte and protozoan distributions along a latitudinal transect in Fennoscandia. Ecography 18: 429–439.Google Scholar
  67. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995b. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolimnol. 13: 21–49.Google Scholar
  68. Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Revue Palaeobot. Palynol. 31: 71–104.Google Scholar
  69. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.Google Scholar
  70. Pugnetti, A. & R. Bettinetti, 1995. The phytoplankton communities of two acid sensitive alpine lakes (lakes Paione, Central Alps, Italy). Mem. Ist. ital. Idrobiol. 53: 39–52.Google Scholar
  71. Qinghong, L. & S. Bråkenhielm, 1995. A statistical approach to decompose ecological variation. Wat. Air Soil Pollut. 85: 1587–1592.Google Scholar
  72. Rawlings, J. O., 1988. Applied regression analysis. A research tool. Wadsworth & Brooks, Pacific Grove.Google Scholar
  73. Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11: 30–33.Google Scholar
  74. Rossaro, B., 1991. Chironomids and water temperature. Aquat. Insects. 13: 87–98.Google Scholar
  75. Rott, E., 1988. Some aspects of the seasonal distribution of flagellates in mountain lakes. Hydrobiologia 161: 159–170.Google Scholar
  76. Servant-Vildary, S., 1982. Altitudinal zonation of mountainous diatom flora in Bolivia: application to the study of the Quaternary. Acta Geol. Acad. Sci. Hungaricae 25: 179–210.Google Scholar
  77. Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.Google Scholar
  78. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  79. Smol, J. P., 1995. Application of Chrysophytes to problems in paleoecology. In Sandgren, C, J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge, 303–329.Google Scholar
  80. Stemberger, R. S., A. T. Herlihy, D. L. Kugler & S. G. Paulsen, 1996. Climate forcing on zooplankton richness in lakes of the northeastern United States. Limnol. Oceanogr. 41: 1093–1101.Google Scholar
  81. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  82. ter Braak, C. J. F., 1987. Unimodal models to relate species to environment. Wageningen.Google Scholar
  83. ter Braak, C. J. F., 1987–1992. CANOCO – a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, New York.Google Scholar
  84. ter Braak, C. J. F., 1988. Partial canonical correspondence analysis. In Bock, H. H. (ed.), Classification methods and related methods of data analysis. North-Holland, Amsterdam, 551–558.Google Scholar
  85. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.Google Scholar
  86. ter Braak, C. J. F., 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems 28: 165–180.Google Scholar
  87. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  88. ter Braak, C. J. F. & L. G. Barendregt, 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Mathematical Biosciences 78: 57–72.Google Scholar
  89. ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.Google Scholar
  90. terBraak, C. J. F. C.W. N. Looman, 1987. Regression. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, 29–77.Google Scholar
  91. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.Google Scholar
  92. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  93. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.Google Scholar
  94. Thienemann, A., 1954. Chironomus. Die Binnengewässer 20, Schweizerbart, Stuttgart.Google Scholar
  95. Vinebrook, R. D. & P. R. Leavitt, 1996. Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol. Oceanogr. 41: 1035–1040.Google Scholar
  96. Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolimnol. 13: 65–77.Google Scholar
  97. Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and ecology of non-biting midges. Chapman & Hall, 405–422.Google Scholar
  98. Walker, I. R. & R. W. Mathewes, 1989. Chironomid (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolimnol. 2: 61–80.Google Scholar
  99. Walker, I. R., R. J. Mott & J. P. Smol, 1991a. Alleröd-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  100. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991b. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  101. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1992. Aquatic invertebrates, climate, scale, and statistical hypothesis testing: a response to Hann, Warner, and Warwick. Can. J. Fish. aquat. Sci. 49: 1276–1280.Google Scholar
  102. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolimnol.: in press.Google Scholar
  103. Weckström, J., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in 30 subarctic Fennoscandian lakes. Arctic and Alpine Research 29: 75–92.Google Scholar
  104. Wiederholm, R., 1983. Chironomidae of the holarctic region. Part 1: Larvae. Ent. Scand. Suppl. 19.Google Scholar
  105. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.Google Scholar
  106. Zeeb, B. A. & J. P. Smol, 1993. Postglacial chrysophycean record from Elk Lake, Minnesota. In Bradbury, J. P. & W. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America Special Paper 276: 239–249.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • André F. Lotter
    • 1
    • 2
  • H. John B. Birks
    • 3
    • 4
  • Wolfgang Hofmann
    • 5
  • Aldo Marchetto
    • 6
  1. 1.Geobotanical InstituteUniversity of BernBernSwitzerland
  2. 2.Swiss Federal Institute of Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  3. 3.Botanical InstituteUniversity of BergenBergenNorway
  4. 4.Environmental Change Research CentreUniversity College LondonLondonUK
  5. 5.Max-Planck-Institut für LimnologiePlönGermany
  6. 6.Consiglio Nazionale delle RicercheIstituto Italiano di IdrobiologiaVerbania PallanzaItaly

Personalised recommendations