Journal of Computer-Aided Molecular Design

, Volume 12, Issue 1, pp 63–79 | Cite as

Classification of auxin plant hormones by interaction property similarity indices

  • Sanja Tomić
  • Razif R. Gabdoulline
  • Biserka Kojić-Prodić
  • Rebecca C. Wade
Article

Abstract

Although auxins were the first type of plant hormone to be identified, little is known about the molecular mechanism of this important class of plant hormones. We present a classification of a set of about 50 compounds with measured auxin activities, according to their interaction properties. Four classes of compounds were defined: strongly active, weakly active with weak antiauxin behaviour, inactive and inhibitory. All compounds were modeled in two low-energy conformations, ‘P’ and ‘T’, so as to obtain the best match to the ‘planar’ and ‘tilted’ conformations, respectively, of indole 3-acetic acid. Each set of conformers was superimposed separately using several different alignment schemes. Molecular interaction energy fields were computed for each molecule with five different chemical probes and then compared by computing similarity indices. Similarity analysis showed that the classes are on average distinguishable, with better differentiation achieved for the T conformers than the P conformers. This indicates that the T conformation might be the active one. Further, a screening was developed which could distinguish compounds with auxin activity from inactive compounds and most antiauxins using the T conformers. The classifications rationalize ambiguities in activity data found in the literature and should be of value in predicting the activities of new plant growth substances and herbicides.

auxins molecular alignment molecular interaction field molecular modeling QSAR similarity index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies, P.J., Plant Hormones and Their Role in Plant Growth and Development, Martinus Nijhoff, Dordrecht, The Netherlands, 1987.Google Scholar
  2. 2.
    Thimann, K.V., Hormone Action in the Whole Life of Plants, The University of Massachusetts Press, Amherst, MA, U.S.A., 1977.Google Scholar
  3. 3.
    Palme, K.J., Plant Growth Regul., 12 (1993) 171.Google Scholar
  4. 4.
    Klämbt, D., Plant Mol. Biol., 14 (1990) 1045.Google Scholar
  5. 5.
    Jones, A.M., Physiol. Plant., 80 (1990) 154.Google Scholar
  6. 6.
    Jones, A.M. and Prasad, P.V., BioEssays, 14 (1992) 43.Google Scholar
  7. 7.
    Venis, M.A. and Napier, M., Crit. Rev. Plant Sci., 14 (1995) 27.Google Scholar
  8. 8.
    Tian, H., Klämbt, D. and Jones, A.M., J. Biol. Chem., 270 (1995) 26962.Google Scholar
  9. 9.
    Löbler, M. and Klämbt, D., J. Biol. Chem., 260 (1985) 9848.Google Scholar
  10. 10.
    Shimomura, S., Sotobayashi, S., Futai, M. and Fukui, T., J. Biochem., 99 (1986) 1513.Google Scholar
  11. 11.
    Inohara, N., Shimomura, S., Fukui, T. and Futai, M., Proc. Natl. Acad. Sci. USA, 86 (1989) 3564.Google Scholar
  12. 12.
    Napier, R.M., Venis, M.A., Bolton, M.A., Richardson, L.I. and Butcher, G.W., Planta, 176 (1988) 519.Google Scholar
  13. 13.
    Veldstra, H., Enzymologia, 11 (1944) 97.Google Scholar
  14. 14.
    Porter, W.L. and Thimann, K.V., Phytochemistry, 4 (1965) 229.Google Scholar
  15. 15.
    Kaethner, J.M., Nature, 267 (1977) 19.Google Scholar
  16. 16.
    Farrimond, J.A., Elliott, M.C. and Clark, D.W., Nature, 274 (1978) 401.Google Scholar
  17. 17.
    Lehmann, P.A.F., Chem.-Biol. Interact., 20 (1978) 239.Google Scholar
  18. 18.
    Rakhaminova, A.B., Khavkin, E.E. and Yaguzhinskii, L.S., Biokhimiya, 43 (1978) 806.Google Scholar
  19. 19.
    Katekar, G.F., Phytochemistry, 18 (1979) 223.Google Scholar
  20. 20.
    Pattabhi, V., Curr. Sci., 59 (1990) 1228.Google Scholar
  21. 21.
    Bures, M.G., Black-Schaefer, C. and Gardner, G., J. Comput.-Aided Mol. Design, 5 (1991) 323.Google Scholar
  22. 22.
    Kojić-Prodić, B., Nigović, B., Tomić, S., Ilić, N., Magnus, V., Konjević, R., Giba, Z. and Duax, W.L., Acta Crystallogr., B47 (1991) 1010.Google Scholar
  23. 23.
    Nigović, B., Kojić-Prodić, B., Antolić, S., Tomić, S., Puntarec, V. and Cohen, J.D., Acta Crystallogr., B52 (1996) 332.Google Scholar
  24. 24.
    Antolić, S., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. and Cohen, J.D., Acta Crystallogr., B52 (1996) 651.Google Scholar
  25. 25.
    Edgerton, M.D., Tropsha, A. and Jones, A.M., Phytochemistry, 35 (1994) 1111.Google Scholar
  26. 26.
    Beale, M.H. and Sponsel, J., Plant Growth Regul., 12 (1996) 227.Google Scholar
  27. 27.
    Ramek, M., Tomić, S. and Kojić-Prodić, B., Int. J. Quant. Chem., Quant. Biol. Symp., 22 (1995) 75.Google Scholar
  28. 28.
    Ramek, M., Tomić, S. and Kojić-Prodić, B., Int. J. Quant. Chem., 60 (1996) 1727.Google Scholar
  29. 29.
    Lutz, B.T.G., Van der Windt, E., Kanters, J., Klämbt, D., Kojić-Prodić, B. and Ramek, M., J. Mol. Struct., 382 (1996) 177.Google Scholar
  30. 30.
    Wade, R.C., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 486–505.Google Scholar
  31. 31.
    Good, A.C., In Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie Academic & Professional, London, U.K., 1995, pp. 1–23.Google Scholar
  32. 32.
    Burt, C. and Richards, G., J. Comput. Chem., 11 (1990) 1139.Google Scholar
  33. 33.
    Richard, A.M., J. Comput. Chem., 12 (1991) 959.Google Scholar
  34. 34.
    Carbo, R., Arnau, M. and Leyda, L., Int. J. Quant. Chem., 17 (1980) 1185.Google Scholar
  35. 35.
    Klebe, G., Abraham, U. and Mietzner, T., J. Med. Chem., 37 (1994) 4130.Google Scholar
  36. 36.
    Cramer III, R.D., De Priest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 443–485.Google Scholar
  37. 37.
    Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.Google Scholar
  38. 38.
    Bagdassarian, C.K., Schramm, V.L. and Schwartz, S.D., J. Am. Chem. Soc., 118 (1996) 8825.Google Scholar
  39. 39.
    Carbo, R. and Calabuig, B., Int. J. Quant. Chem., 42 (1992) 1681.Google Scholar
  40. 40.
    Hodgkin, E.E. and Richards, W.G., Int. J. Quant. Chem., Quant. Biol. Symp., 14 (1987) 105.Google Scholar
  41. 41.
    Good, E.E., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.Google Scholar
  42. 42.
    Ray, P.M., Dohrmann, U. and Hartel, R., Plant Physiol., 60 (1977) 585.Google Scholar
  43. 43.
    Hatano, T., Katayama, M. and Marumo, S., Experientia, 43 (1987) 1237.Google Scholar
  44. 44.
    Hatano, T., Kato, Y., Katayama, M. and Marumo, S., Experientia, 45 (1989) 400.Google Scholar
  45. 45.
    Katayama, M., Kato, Y., Kimoto, H. and Fuji, S., Experientia, 51 (1995) 721.Google Scholar
  46. 46.
    Katekar, G.F. and Geissler, A.E., Phytochemistry, 21 (1982) 257.Google Scholar
  47. 47.
    Katekar, G.F. and Geissler, A.E., Phytochemistry, 22 (1983) 27.Google Scholar
  48. 48.
    Rescher, U., Walther, A., Schiebl, C. and Klämbt, D., J. Plant Growth Regul., 15 (1996) 1.Google Scholar
  49. 49.
    Reinecke, D.M., Ozga, J.A. and Magnus, V., Phytochemistry, 40 (1995) 1361.Google Scholar
  50. 50.
    Wain, R.L. and Wightman, F., Ann. Appl. Biol., 40 (1953) 244.Google Scholar
  51. 51.
    Fawcett, C.H., Wain, R.L. and Wightman, F., Ann. Appl. Biol., 43 (1955) 342.Google Scholar
  52. 52.
    Veldstra, H. and Van der Westeringh, C., Recl. Trav. Chim. Pays-Bas, 70 (1951) 1113.Google Scholar
  53. 53.
    Bruström, H., Physiol. Plant., 3 (1950) 277.Google Scholar
  54. 54.
    Nitsch, J.P. and Nitsch, C., Plant Physiol., 3 (1956) 94.Google Scholar
  55. 55.
    Mür, R.M. and Hansch, C., Physiol. Plant., 28 (1953) 218.Google Scholar
  56. 56.
    Stenlid, G. and Engvild, K.C., Physiol. Plant., 70 (1987) 109.Google Scholar
  57. 57.
    Böttger, M., Engvild, K.C. and Soll, H., Planta, 140 (1978) 89.Google Scholar
  58. 58.
    Toothill, J.R., Wain, R.L. and Wightman, F., Ann. Appl. Biol., 44 (1956) 547.Google Scholar
  59. 59.
    Hansen, B., I. Bot. Nat., (1954) 230.Google Scholar
  60. 60.
    Veldstra, H., Recl. Trav. Chim. Pays-Bas, 71 (1952) 15.Google Scholar
  61. 61.
    Pybus, M.F., Wain, R.L. and Wightman, F., Nature, 182 (1958) 1094.Google Scholar
  62. 62.
    Smith, G., Kennard, C.H.L. and White, A.H., Acta Crystallogr., B34 (1978) 2885.Google Scholar
  63. 63.
    Hoffmann, A.L., Fox, S.W. and Bullock, M.W., J. Biol. Chem., 196 (1952) 437.Google Scholar
  64. 64.
    INSIGHT, v. 95, Biosym Technologies, San Diego, CA, U.S.A., 1995.Google Scholar
  65. 65.
    DISCOVER, v. 2.97, Biosym Technologies, San Diego, CA, U.S.A., 1995.Google Scholar
  66. 66.
    Maple, J.R., Thacher, T.S., Dinur, U. and Hagler, A.T., Chem. Design Autom. News, 5(9) (1990) 5.Google Scholar
  67. 67.
    Gundertofte, K., Liljefors, T., Norrby, P.O. and Pettersson, I., J. Comput. Chem., 17 (1996) 429.Google Scholar
  68. 68.
    Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins Struct. Funct. Genet., 4 (1988) 31.Google Scholar
  69. 69.
    Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.Google Scholar
  70. 70.
    Tomić, S., Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 1993.Google Scholar
  71. 71.
    GRID user manual, edition 14, Molecular Discovery Ltd., Oxford, U.K.Google Scholar
  72. 72.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  73. 73.
    Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.Google Scholar
  74. 74.
    Wade, R.C., Clark, K.J. and Goodford, P.J., J. Med. Chem., 36 (1993) 140.Google Scholar
  75. 75.
    Wade, R.C. and Goodford, P.J., J. Med. Chem., 36 (1993) 148.Google Scholar
  76. 76.
    Gabdoulline, R.R. and Wade, R.C., J. Mol. Graph., 14 (1996) 341.Google Scholar
  77. 77.
    Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, NY, U.S.A., 1961.Google Scholar
  78. 78.
    Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.Google Scholar
  79. 79.
    Tomić, S., Ramek, M. and Kojić-Prodić, B., Croat. Chem. Acta, (1998) in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Sanja Tomić
    • 1
    • 2
  • Razif R. Gabdoulline
    • 1
  • Biserka Kojić-Prodić
    • 2
  • Rebecca C. Wade
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany
  2. 2.Ruder Bošković InstituteZagrebCroatia

Personalised recommendations