Journal of Paleolimnology

, Volume 19, Issue 2, pp 139–159 | Cite as

A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala

  • Jason H. Curtis
  • Mark Brenner
  • David A. Hodell
  • Richard A. Balser
  • Gerald A. Islebe
  • Henry Hooghiemstra


We used multiple variables in a sediment core from Lake Peten-Itza, Peten, Guatemala, to infer Holocene climate change and human influence on the regional environment. Multiple proxies including pollen, stable isotope geochemistry, elemental composition, and magnetic susceptibility in samples from the same core allow differentiation of natural versus anthropogenic environmental changes. Core chronology is based on AMS 14C measurement of terrestrial wood and charcoal and thus avoids the vagaries of hard-water-lake error. During the earliest Holocene, prior to ∼9000 14C yr BP, the coring site was not covered by water and all proxies suggest that climatic conditions were relatively dry. Water covered the coring site by ∼9000 14C yr BP, coinciding with filling of other lakes in Peten and farther north on the Yucatan Peninsula. During the early Holocene (∼9000 to ∼6800 14C yr BP), pollen data suggest moist conditions, but high δ 18O values are indicative of relatively high E/P. This apparent discrepancy may be due to a greater fractional loss of the lake's water budget to evaporation during the early stages of lake filling. Nonetheless, conditions were moist enough to support semi-deciduous lowland forest. Decrease in δ 18O values and associated change in ostracod species at ∼6800 14C yr BP suggest a transition to even moister conditions. Decline in lowland forest taxa beginning ∼5780 14C yr BP may indicate early human disturbance. By ∼2800 14C yr BP, Maya impact on the environment is documented by accelerated forest clearance and associated soil erosion. Multiple proxies indicate forest recovery and soil stabilization beginning ∼1100 to 1000 14C yr BP, following the collapse of Classic Maya civilization.

geochemistry Guatemala Holocene lakesediment Maya magnetic susceptibility paleolimnology pollen stable isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. B., M. W. Binford, M. Brenner & K. R. Kelts, in press. A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quat. Res.Google Scholar
  2. Andersen, J.M., 1976. An ignition method for determination of total phosphorus in lake sediments. Wat. Res. 10: 329–331.Google Scholar
  3. APHA(American Public Health Association), 1992. Standard Methods for the Examination ofWater andWastewater, 18th ed. American Public Health Association, Washington, D.C.Google Scholar
  4. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. Catena 5: 1–8.Google Scholar
  5. Appleby, P. G., P. J. Nolan, D.W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27.Google Scholar
  6. Balser, R.A., 1995. Rock Magnetic Study of Environmental Changes in NeoTropical Lakes, from the Early Holocene to the Present. Ms. Thesis, Univ. of Florida, Gainesville, FL. 166 pp.Google Scholar
  7. Binford, M. W., M. Brenner, T. J. Whitmore, A. Higuera-Gundy, E. S. Deevey & B. W. Leyden, 1987. Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quat. Sci. Rev. 6: 115–128.Google Scholar
  8. Binford, M.W., A. L. Kolata, M. Brenner, J. Janusek, M. T. Seddon, M. Abbott & J. H. Curtis, in press. Climate variation and the rise and fall of an Andean civilization. Quat. Res.Google Scholar
  9. Bradbury, J. P., B.W. Leyden, M. SalgadoLabouriau, W. M. Lewis, Jr., C. Schubert, M. W. Binford, D. G. Frey, D. R. Whitehead & F. H. Weibezahn, 1981. Late Quaternary environmental history of Lake Valencia, Venezuela. Science 214: 1299–1305.Google Scholar
  10. Brenner, M., 1983. Paleolimnology of the Peten Lake District, Guatemala, II. Mayan population density and sediment and nutrient loading of Lake Quexil. Hydrobiologia 103: 205–210.Google Scholar
  11. Brenner, M., 1994. Lakes Salpeten and Quexil, Peten, Guatemala, Central America. In E. Gierlowski-Kordesch & K. Kelts (eds), Global Geological Record of Lake Basins, Vol. 1. Cambridge Univ. Press: 377–380.Google Scholar
  12. Brenner, M., B. Leyden & M. W. Binford, 1990. Recent sedimentary histories of shallow lakes in the Guatemalan savannas. J. Paleolimnol. 4: 239–251.Google Scholar
  13. Brenner, M., J. H. Curtis, A. Higuera-Gundy, D. A. Hodell, G. A. Jones, M. W. Binford & K. T. Dorsey, 1994. Lake Miragoane, Haiti (Caribbean). In Gierlowski-Kordesch, E. & K. Kelts (eds), Global Geological Record of Lake Basins, Vol. 1. Cambridge Univ. Press. 403–405.Google Scholar
  14. Brezonik, P. L. & J. L. Fox, 1974. The limnology of selected Guatemalan lakes. Hydrobiologia 45: 467–487.Google Scholar
  15. Bush, M. B. & P. A. Colinvaux, 1990. A pollen record of a complete glacial cycle from lowland Panama. J.Vegetation Sci. 1: 105–118.Google Scholar
  16. Bush, M. B., D. R. Piperno, P. A. Colinvaux, P. E. De Oliveira, L. A. Krissek, M. C. Miller & W. E. Rowe, 1992. A 14300YR paleoecological profile of a lowland tropical lake in Panama. Ecol. Monogr. 62: 251–275.Google Scholar
  17. Chepstow-Lusty, A. J., K. D. Bennett, V. R. Switsur & A. Kendall, 1996. 4000 years of human impact and vegetation change in the central Peruvian Andes – with events parellelling the Maya record? Antiquity 70: 824–833.Google Scholar
  18. Covich, A. P., 1976. Recent changes inmolluscan diversity of a large tropical lake (Lago de Peten, Guatemala). Limnol. Oceanogr. 21: 51–59.Google Scholar
  19. Covich, A. P. & M. Stuiver, 1974. Changes in oxygen 18 as ameasure of longterm fluctuations in tropical lake levels and molluscan populations. Limnol. Oceanogr. 19: 682–691.Google Scholar
  20. Cowgill, U. M., G. E. Hutchinson, A. A. Racek, C. E. Goulden, R. Patrick & M. Tsukada, 1966. The history of Laguna de Petenxil, a small lake in northern Guatemala. Conn. Acad. Arts Sci., Mem. 17: 1–126.Google Scholar
  21. Craig, H., 1965. The measurement of oxygen isotope paleotemperatures. In Tongiorgi, E. (ed.), Proceedings of the Spoleto Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures, Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, Pisa, 161–182.Google Scholar
  22. Curtis, J. H. & D. A. Hodell, 1993. An isotopic and trace element study of ostracods from LakeMiragoane, Haiti: A10.5 kyr record of paleosalinity and paleotemperature changes in the Caribbean. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, D.C.: 135–152.Google Scholar
  23. Curtis, J. H., D. A. Hodell & M. Brenner, 1996. Climate variability on theYucatan Peninsula (Mexico) during the last 3500 years, and implications for Maya cultural evolution. Quat. Res. 46: 37–47.Google Scholar
  24. Curtis, J. H., M. Brenner & D. A. Hodell, in prep. Changes in Moisture Availability in the Lake Valencia Basin, Venezuela (late Pleistocene to present). The Holocene.Google Scholar
  25. Deevey, E. S., 1978. Holocene forests and Maya disturbance near Quexil Lake, Peten, Guatemala. Pol. Arch. Hydrobiol. 25: 117–129.Google Scholar
  26. Deevey, E. S. & D. S. Rice, 1980. Coluviacion y retencion de nutrientes en el distrito lacustre del Peten central, Guatemala. Biotica 5: 129–144.Google Scholar
  27. Deevey, E. S. & M. Stuiver, 1964. Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol. Oceanogr. 9: 1–11.Google Scholar
  28. Deevey, E. S., M. Brenner & M. W. Binford, 1983. Paleolimnology of the Peten Lake District, Guatemala, III. Late Pleistocene and Gamblian environments of the Maya area. Hydrobiologia 103: 211–216.Google Scholar
  29. Deevey, E. S., H. H. Vaughan & G. B. Deevey, 1977. Lakes Yaxha and Sacnab, Peten, Guatemala: Planktonic fossils and sediment focusing. In Golterman, H. L. (ed.), Interactions Between Sediments and Fresh Water. Dr W. Junk B.V. Publishers, The Hague. 189–196.Google Scholar
  30. Deevey, E. S., M. Brenner, M. S. Flannery & G. H. Yezdani, 1980. Lakes Yaxha and Sacnab, Peten, Guatemala: limnology and hydrology. Arch. Hydrobiol. 57: 419–460.Google Scholar
  31. Deevey, E. S., D. S. Rice, P. M. Rice, H. H. Vaughan, M. Brenner & M. S. Flannery, 1979. Mayan urbanism: impact on a tropical karst environment. Science 206: 298–306.Google Scholar
  32. Engleman, E. E., L. L. Jackson & D. R. Norton, 1985. Determination of carbonate carbon in geological materials by coulometric titration. Chem. Geol. 53: 125–128.Google Scholar
  33. Faegri, K. & J. Iversen, 1975. Textbook of pollen analysis, 3rd ed. Hafner, New YorkGoogle Scholar
  34. Fairbanks, R. G., 1989. A 17 000 year glacioeustatic sea level record: influences of glacial melting rates in the Younger Dryas event and deepocean circulation. Nature 342: 637–642.Google Scholar
  35. Fisher, M. M., M. Brenner & K. R. Reddy, 1992. A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J. Paleolimnol. 7: 157–161.Google Scholar
  36. Fontes, J. C. & R. Gonfiantini, 1967. Comportement isotopique au cours de l'evaporation de deux bassins sahariens. Earth Plan. Sci. Lett. 3: 258–266.Google Scholar
  37. Gasse, F., R. Techet, A. Durand, E. Gilbert & J. C. Fontes, 1990. The aridhumid transition in the Sahara and Sahel during the last glaciation. Nature 346: 141–146.Google Scholar
  38. Grimm, E. C., G. L. Jacobson, Jr., W. A. Watts, B. C. S. Hansen & K. A. Maasch, 1993. A 50-000 year record of climate oscillations from Florida and its temporal correlation with the Heinrich Events. Science 261: 198–200.Google Scholar
  39. Grossman, E. L. & T. Ku, 1981. Aragonite-water isotopic paleotemperature scale based on the benthic foraminifer Hoeglundina elegans. Geol. Soc.Am., AnnualMeetings, Abstracts with Programs 13: 464.Google Scholar
  40. Håakanson, L. & M. Jansson, 1983. Principles of lake sedimentology. SpringerVerlag, NY. 316 pp.Google Scholar
  41. Hansen, B. C. S., 1990. Pollen stratigraphy of Laguna de Cocos. In Pohl, M. D. (ed.), Ancient Maya Wetland Agriculture: excavations on Albion Island, northern Belize. WestviewPress, Boulder: 155–186.Google Scholar
  42. Haviland, W., 1969. A new population estimate for Tikal, Guatemala. Am. Antiquity 34: 424–433.Google Scholar
  43. Haviland, W., 1972. Family size, prehistoric population estimates, and the ancient Maya. Am. Antiquity 37: 135–139.Google Scholar
  44. Hawthorne, T. B. & J. A. McKenzie, 1993. Biogenic magnetite: authigenesis and diagenesis with changing redox conditions in Lake Greifen, Switzerland. In Aï?ssaoui, D. M., D. F. McNeill & N. F. Hurley (eds) Applications of paleomagnetism to sedimentary geology, SEPM Special Publication No. 49, Tulsa, OK: 3–15.Google Scholar
  45. Heaton, T. H. E., J. A. Holmes & N. D. Bridgwater, 1995. Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. The Holocene 5: 428–434.Google Scholar
  46. Hodell, D. A., J. H. Curtis & M. Brenner, 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature 375: 391–394.Google Scholar
  47. Hodell, D. A., J. H. Curtis, G. A. Jones, A. Higuera-Gundy, M. Brenner, M. W. Binford & K. T. Dorsey, 1991. Reconstruction of Caribbean climate change over the past 10 500 years. Nature 352: 790–793.Google Scholar
  48. Holdridge, L. R., 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.Google Scholar
  49. Holmes, J. A., F. A. Street-Perrott, M. Ivanovich & R. A. Perrott, 1995. A late Quaternary palaeolimnological record from Jamaica based on trace element chemistry of ostracod shells. Chem. Geol. 124: 143–160.Google Scholar
  50. Horn, S. P. & R. L. Sanford, Jr., 1992. Holocene fires in Costa Rica. Biotropica 24: 354–361.Google Scholar
  51. Islebe, G. A., H. Hooghiemstra & K. van der Borg, 1995. A cooling event during the Younger Dryas Chron in Costa Rica. Palaeogeogr. Palaeoclim. Palaeoecol. 117: 73–80.Google Scholar
  52. Islebe, G. A., H. Hooghiemstra & R. Van't Veer, 1996a. Holocene vegetation and water table history in two bogs of the Cordillera de Talamanca, Costa Rica. Vegetatio 124: 155–171.Google Scholar
  53. Islebe, G. A., H. Hooghiemstra, M. Brenner, J. H. Curtis & D. A. Hodell, 1996b. A Holocene vegetation history from lowland Guatemala. The Holocene 6: 265–271.Google Scholar
  54. Leyden, B. W., 1984. Guatemalan forest synthesis after Pleistocene aridity. Proc. Natl. Acad. Sci. USA 81: 4856–4859.Google Scholar
  55. Leyden, B.W., 1985. Late Quaternary aridity and Holocenemoisture fluctuations in the Lake Valencia Basin, Venezuela. Ecology 66: 1279–1295.Google Scholar
  56. Leyden, B. W., 1987. Man and climate in the Maya lowlands. Quat. Res. 28: 407–414.Google Scholar
  57. Leyden, B. W., M. Brenner, D. A. Hodell & J. H. Curtis, 1993. Late Pleistocene climate in the Central American lowlands In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. Am. Geophys. Union, Washington, D.C.: 165–178.Google Scholar
  58. Leyden, B. W., M. Brenner, D. A. Hodell & J. H. Curtis, 1994. Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka. Palaeogeogr. Palaeoclim. Palaeoecol. 109: 193–210.Google Scholar
  59. Leyden, B.W., M. Brenner, T. J. Whitmore, J. H. Curtis, D. R. Piperno & B. H. Dahlin, 1996. A record of long-and short-term climate variation from northwest Yucatan: Cenote San Jose Chulchaca. In Fedick, S. L. (ed.), The Managed Mosaic: Ancient Maya Agriculture and Resource Use. Univ. of Utah Press, 30–50.Google Scholar
  60. Lezine, A. M., 1989. Late Quaternary vegetation and climate of the Sahel. Quat. Res. 32: 317–334.Google Scholar
  61. Lister, G. S., K. Kelts, C. K. Zao, J. Yu & F. Niessen, 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr. Palaeoclim. Palaeoecol. 84: 141–162.Google Scholar
  62. Lowe, J. W. G., 1985. The Dynamics of Apocalypse. Univ. of New Mexico Press, Albuquerque, 275 pp.Google Scholar
  63. Lundell, C. L., 1937. The Vegetation of Peten. Carnegie Inst., Washington, D.C. 244 pp.Google Scholar
  64. Markgraf, V., 1989. Paleoclimates in Central and South America since 18 000 BP based on pollen and lakelevel records. Quat. Sci. Rev. 8: 1–24.Google Scholar
  65. Metcalfe, S. E., 1995. Holocene environmental change in the Zacapu Basin, Mexico: a diatombased record. The Holocene 5: 196–208.Google Scholar
  66. Metcalfe, S. E., F. A. Street-Perrott, S. L. O'Hara, P. E. Hales & R. A. Perrott, 1994. The palaeolimnological record of environmental change: Examples from the arid frontier of Mesoamerica. In Millington, A. C. & K. Pye (eds), Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives. John Wiley & Sons, Chichester, 131–145.Google Scholar
  67. Ogden, J. G., III & W. C. Hart, 1977. Dalhousie University natural radiocarbon measurements II. Radiocarbon 19: 392–399.Google Scholar
  68. Ortloff, C. R. & A. L. Kolata, 1993. Climate and collapse: agroecological perspectives on the decline of the Tiwanaku state. J. Arch. Sci. 20: 195–221.Google Scholar
  69. Penados, C. E., 1980. Tendra solucion el problema del Lago PetenItza? Peten-Itza 21: 9.Google Scholar
  70. Piperno, D. R., M. B. Bush & P. A. Colinvaux, 1990. Paleoenvironments and human settlements in lateglacial Panama. Quat. Res. 33: 108–116.Google Scholar
  71. Rice, D. S. & P. M. Rice, 1990. Population size and population change in the Central Peten Lake Region, Guatemala. In Culbert, T. P. & D. S. Rice (eds), Precolumbian population history in the Maya Lowlands. Univ. of New Mexico Press, Albuquerque: 123–148.Google Scholar
  72. Rice, D. S., P. M. Rice & E. S. Deevey, 1985. Paradise lost: Classic Maya impact on a lacustrine environment. In Pohl, M. (ed.), Prehistoric lowland Maya environment and subsistence economy. Peabody Museum Papers 77, Harvard Univ. Press, Cambridge, MA: 91–105.Google Scholar
  73. Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low background gamma counting: applications for 210Pb dating of sediments. J. Paleolimnol. 10: 115–128.Google Scholar
  74. Schwartz, N. B., 1990. Forest Society: A Social History of Peten, Guatemala. Univ. of Pennsylvania Press, Philadelphia.Google Scholar
  75. Simmons, C. S., J. M. Tarano & J. H. Pinto, 1959. Clasificacion de Reconocimiento de los Suelos de la Republica de Guatemala. Ministerio de Agricultura, Guatemala City: 1000 pp.Google Scholar
  76. Socki, R. A., H. R. Karlsson & E. K. Gibson, 1992. Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials. Analyt. Chem. 64: 829–831.Google Scholar
  77. Street, F. A. & A. T. Grove, 1976. Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. Nature 261: 385–390.Google Scholar
  78. Street, F. A. & A. T. Grove, 1979. Global maps of lake-level fluctuations since 30 000 yrs BP. Quat. Res. 12: 83–118.Google Scholar
  79. Street-Perrott, F. A. & S. P. Harrison, 1985. Lake levels and climate reconstruction. Paleoclimate Data and Modeling. Wiley, New York: 291–340.Google Scholar
  80. Street-Perrott, F. A., P. E. Hales, R. A. Perrott, J. Ch. Fontes, V. R. Switsur & A. Pearson, 1993. Late Quaternary palaeolimnology of a tropical marl lake: Wallywash Great Pond, Jamaica. J. Paleolimnol. 9: 3–22.Google Scholar
  81. Stuiver, M. & B. Becker, 1993. High-precision calibration of the radiocarbon time scale AD 1950–6000 BC. Radiocarbon 35: 35–65.Google Scholar
  82. Stuiver, M. & P. J. Reimer, 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
  83. Talbot, M. R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. 80: 261–279.Google Scholar
  84. Thompson, L. G., E. Mosley-Thompson, J. F. Bolzan & B. R. Koci, 1985. A 1500year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 229: 971–973.Google Scholar
  85. Thompson, R. & F. Oldfield, 1986. Environmental Magnetism. Allen and Unwin, London: 227 pp.Google Scholar
  86. Vaughan, H. H., E. S. Deevey & S. E. Garrett-Jones, 1985. Pollen stratigraphy of two cores from the Peten Lake District. In Pohl, M. (ed.), Prehistoric Lowland Maya Environment and Subsistence Economy. Peabody Museum Papers 77, Harvard Univ, Press, Cambridge, MA: 73–89.Google Scholar
  87. Vinson, G. L., 1962. Upper Cretaceous and Tertiary stratigraphy of Guatemala. Am. Assoc. Petrol. Geol. Bull. 46: 425–456.Google Scholar
  88. Watts, W. A., 1969. A pollen diagram from Mud Lake, Marion County, northcentral Florida. Geol. Soc. Am. Bull. 80: 631–642.Google Scholar
  89. Watts, W. A., 1975. A late Quaternary record of vegetation from Lake Annie, southcentral Florida. Geology 3: 344–346.Google Scholar
  90. Watts, W. A. & B. C. S. Hansen, 1988. Environments of Florida in the Late Wisconsin and Holocene. In Purdy, B. A. (ed.), Wet Site Archaeology. The Telford Press, Caldwell, New Jersey: 307–323.Google Scholar
  91. Watts, W. A. & B. C. S. Hansen, 1994. Pre-Holocene and Holocene pollen records of vegetation history from the Florida peninsula and their climatic implications. Palaeogeogr. Palaeoclim. Palaeoecol. 109: 163–176.Google Scholar
  92. Watts, W. A. & M. Stuiver, 1980. Late Wisconsin climate of northern Florida and origin of speciesrich deciduous forest. Science 210: 325–327.Google Scholar
  93. Watts, W. A., B. C. S. Hansen & E. C. Grimm, 1992. Camel Lake: a 40 000yr record of vegetational and forest history from northwest Florida. Ecology 73: 1056–1066.Google Scholar
  94. Whitmore, T. J., M. Brenner, J. H. Curtis, B. H. Dahlin & B.W. Leyden, 1996. Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico. The Holocene 6: 273–287.Google Scholar
  95. Wiseman, F. M., 1978. Agricultural and historical ecology of the Maya lowlands. In Harrision, P. D. & B. L. Turner II (eds), Prehispanic Maya Agriculture. Univ. of New Mexico Press, Albuquerque: 63–115.Google Scholar
  96. Wright, H. E. Jr., D. H. Mann & P. H. Glaser, 1984. Piston corers for peat and lake sediments. Ecology 65: 657–659.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jason H. Curtis
    • 1
  • Mark Brenner
    • 2
  • David A. Hodell
    • 1
  • Richard A. Balser
    • 1
  • Gerald A. Islebe
    • 3
  • Henry Hooghiemstra
    • 3
  1. 1.Department of GeologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleUSA
  3. 3.Hugo de Vries LaboratoriumAmsterdamThe Netherlands

Personalised recommendations