Journal of Paleolimnology

, Volume 17, Issue 3, pp 275–294 | Cite as

Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden

  • Siv Olsson
  • Joachim Regnéll
  • Anders Persson
  • Per Sandgren
Article

Abstract

Responses to recent land-use changes and pollutant loading in the sediment of a hypertrophic lake in southern Sweden were studied by comparison of geochemical, pollen and magnetic records with historical land-use data. A chronology was constructed for the last two centuries by correlating changes in the pollen diagram to major events in the land-use history. Sediment accumulation was low (mean c. 0.2 g cm-2 yr-1) prior to 1800 AD, when less than 25% of the catchment was arable land. Reorganization of the agrarian system during the 19th century increased the annually tilled area by 300%, which accelerated soil erosion and substantially increased the accumulation of allochtonous matter in the lake. Since the turn of the century 90% of the catchment has been ploughed every year. The deposition of clastic matter in the lake has, however, decreased due to a gradual rerouting of the drainage system, which has reduced the effective catchment area by c. 85%.

Authigenic vivianite (Fe3(PO4)2.8H2O) is a major P phase in the preindustrial non-sulphidic sediments, which suggests that the sediments at that time served as a fairly efficient sink for P. The arable expansion, increased manuring and, eventually, the introduction of artificial fertilizers during the 19th century led to a massive influx of nutrients, which elevated primary production in the lake. Subsequent development of bottom water anoxia around 1900, in combination with an additional pollutant burden of sulphate within the lake basin, led to major alterations of the biogeochemical cycles. The most critical change in the post-1900 sediments involved the cycling of Fe and P. The linkage between the lacustrine P and Fe cycles can explain that FeS formation was paralleled by a release of P from the sedimentary pool. This supply of P to the lake basin must have supplemented the nutrient supply by modern agriculture and contributed to recent hypertrophication. The bacterial sulphate reduction also affected the generation of alkalinity which supported a significant calcite precipitation in the post-1900 sediments.

S is enriched 10-fold in the post-1900 sediments compared to preindustrial values. Along with the rise in S, soot particles derived from fossil fuel combustion appear in the sediments for the first time. Therefore, Bussj¨osj¨on is thought to be a good example of how a well-buffered, highly productive lake may respond to the pollution by sulphur from acid rain.

lake sediment chemistry pollen written sources land-use pollution history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. J. & B. V. Odgaard, 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275/276: 411–422.Google Scholar
  2. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorous profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.Google Scholar
  3. Bahnson, H., 1968. Kolorimetriske bestemmelser af humificeringstal i højmosetørv fra Fuglsø mose på Djursland. Medd. fra Dansk Geologisk Forening 18–1: 55–63.Google Scholar
  4. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. Soc. Lond. B 305: 451–477.Google Scholar
  5. Battarbee, R. W., 1989. Geographical research on acid rain. The acidification of Scottish lochs. The Geographical J. 155: 353–377.Google Scholar
  6. Belekopytov, I. E. & V. V. Beresnevich, 1955. Giktorf's peat borers. Torf. Prom. 8: 9–10.Google Scholar
  7. Bengtsson, L. & M. Enell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons. Chichester: 423–451.Google Scholar
  8. Berglund, B. E. & M. Ralska-Jasiewiczowa, 1986. Pollen analysis and pollen diagrams. In Berglund, B. E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons. Chichester: 455–484.Google Scholar
  9. Berner, R. A., 1971. Principles of chemical sedimentology. McGraw-Hill. New York, 240 pp.Google Scholar
  10. Berner, R. A., 1981a. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortsch. Min. 59: 117–135.Google Scholar
  11. Berner, R. A., 1981b. A new geochemical classification of sedimentary environments. J. Sed. Petrol. 51: 359–365.Google Scholar
  12. Birks, H. J. B. & H. H. Birks, 1980. Quaternary palaeoecology. Edward Arnold. London. 289 pp.Google Scholar
  13. Björck, S., J. A. Dearing & A. Jonsson, 1982. Magnetic susceptibility of Late-Weichselian deposits in southeastern Sweden. Boreas 11: 99–111.Google Scholar
  14. Canfield D. E. & R. A. Berner, 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. Geoch. Cosmoch. Acta 51: 645–659.Google Scholar
  15. Caraco, N. F., 1993. Disturbance of the Phosphorus Cycle: A Case of Indirect Effects of Human Activity. TREE 8–2: 51–54.Google Scholar
  16. Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.Google Scholar
  17. Cook, R. B. & D. W. Schindler, 1983. The biogeochemistry of sulfur in an experimentally acified lake. Ecol. Bull. 35: 115–127.Google Scholar
  18. Cook, R. B., R. G. Kreis Jr., J. Kingston, K. E. Camburn, S. A. Norton, M. J. Mitchell, B. Fry & L. C. K. Shane, 1990. Paleolimnology of McNearny Lake: an acidified lake in northern Michigan. J. Paleolim. 3: 13–34.Google Scholar
  19. Dearing, J. A., K. Alström, A. Bergman, J. Regnéll & P. Sandgren, 1990. Recent and Long-term Records of Soil Erosion from Southern Sweden. In Boardman, J., I. D. L; Foster & J. A. Dearing (eds). Soil Erosion on Agricultural Land. John Wiley & Sons, Chisester, 173–591.Google Scholar
  20. Digerfeldt, G., 1972. The Post-Glacial development of Lake Trummen. Regional vegetation history, water level changes and palaeolimnology. Folia limn. scand. 16: 96 pp.Google Scholar
  21. Digerfeldt, G. & U. Lettevall, 1969. A new type of sediment sampler. Geol. För. Stockholm För. 91: 399–406.Google Scholar
  22. Drever, J. I., 1973. The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Miner. 58: 553–554.Google Scholar
  23. Emanuelsson, U., C. Bergendorff, B. Carlsson, N. Lewan & O. Nordell, 1985. Det skånska kulturlandskapet. Signum, Lund, 248 pp.Google Scholar
  24. Emerson, S. & G. Widmer, 1978. Early diagenesis in anaerobic lake sediments — II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geoch. Cosmoch. Acta 42: 1307–1316.Google Scholar
  25. Engstrom, D. R. & H. E. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds). Lake Sediments and Environmental History. Leicester University Press: 11–68.Google Scholar
  26. Faure, G., J. H. Crocket & P. M. Hurley, 1967. Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and the Great Lakes. Geoch. Cosmoch. Acta 31: 451–461.Google Scholar
  27. Gaillard, M.-J., J. A. Dearing, F. El-Daoushy, M. Enell & H. Håkansson, 1991. A late Holocene record of land-use history, soil erosion, lake trophy and lake-level fluctuations at Bjäresjösjön (South Sweden). J. Paleolim. 6: 51–81.Google Scholar
  28. Germundsson, T., 1987. Population, landholding and the landscape. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 33 pp.Google Scholar
  29. Germundsson, T. & A. Persson, 1987. Odling och djurhållning i Ystadsområdet på 1850-talet. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 124 pp.Google Scholar
  30. Gorham, E. & J. E. Sanger, 1976. Fossilized pigments as stratigraphic indicators of cultural eutrophication in Shagawa Lake, northeastern Minnesota. Geol. Soc. Am. Bull. 87: 1638–1642.Google Scholar
  31. Håkansson, H. & J. Regnéll, 1993. Diatom succession related to land use during the last 6000 years: a study of a small eutrophic lake in southern Sweden. J. Paleolim. 8: 49–69.Google Scholar
  32. Hansen, K., 1959. Sediments from Danish lakes. J. Sed. Petrol. 29: 38–46.Google Scholar
  33. Havinga, A. J., 1971: An experimental investigation into the decay of pollen and spores in various soil types. In Brooks, J., P. R. Grant, M. Muir, P. van Gijzel & G. Shaw (eds), Sporopollenin. Academic Press, London, New York: 446–479.Google Scholar
  34. Holdren Jr., G. R., T. M. Brunelle, G. Matisoff & M. Wahlen, 1984: Timing the increase in atmospheric sulphur deposition in the Adirondack Mountain. Nature 311: 245–247.Google Scholar
  35. Hsu, P. H., 1977. Aluminium Hydroxides and Oxyhydroxides. In Dixon, J. B. & S. B. Weed (eds), Minerals in the soil environment. Soil Science Society of America, Madison, Wisconsin USA: 99–143.Google Scholar
  36. Hunt, C. P., M. J. Singer, G. Kletetschka, J. TenPas & K. L. Verosub, 1995. Effect of citrate-bicarbonate-dithionite treatment on finegrained magnetite and maghemite. Earth Planet. Letters 130: 87–94.Google Scholar
  37. Jones, B. F. & C. J. Bowser, 1978. The Mineralogy and Related Chemistry of Lake Sediments. In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag. New York: 179–235.Google Scholar
  38. Kinsman, D. J. J. & H. D. Holland, 1969. The co-precipitation of cations with CaCO3 — IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geoch. Cosmoch. Acta 33: 157.Google Scholar
  39. Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.Google Scholar
  40. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolim. 9: 109–127.Google Scholar
  41. Linnaeus, C., 1751. Carl Linnaeus skånska resa år 1749. In von Sydow, C.-O. (ed.) 1977. Wahlström & Widstrand, Stockholm, 561 pp.Google Scholar
  42. Matisoff, G. & G. R. Holdren Jr., 1993. Historical loading record of sulfur in an Adirondack Lake. J. Paleolim. 9: 243–256.Google Scholar
  43. Mehra, O. P. & M. L. Jackson, 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Minerals. 7th Nat. Conf. Pergamon Press. London: 317–327.Google Scholar
  44. Mitchell, M. J., S. C. Schindler, J. S. Owen & S. A. Norton, 1988. Comparison of sulfur concentrations within lake sediments. Hydrobiologia 157: 219–229.Google Scholar
  45. Morgan, M. D., 1995. Modeling excess sulfur deposition on wetland soils using stable sulfur isotopes. Wat., Air, Soil Pollut. 79: 299–307.Google Scholar
  46. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329.Google Scholar
  47. Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147–201.Google Scholar
  48. Mylona, S., 1993. Trends of sulphur dioxide emissions, air concentrations and depositions of sulphur in Europe since 1880. EMEP/MSC-W Report 2/93. Norwegian Meteorological Institute, 52 pp.Google Scholar
  49. Nanneson, L., 1914. Skånes nötkreatursskötsel från 1800-talets början till nuvarande tid. Skrifter utgivna av de skånska hushållningssällskapen vid deras hundrårsjubileum år 1914, 160 pp.Google Scholar
  50. Nriagu, J. O. & R. D. Coker, 1983. Sulphur in sediments chronicles past changes in lake acidification. Nature 303: 692–694.Google Scholar
  51. Nriagu, J. & Y. K. Soon, 1985. Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geoch. Cosmoch. Acta 49: 823–834.Google Scholar
  52. Odgaard, B. V., 1993. The sedimentary record of spheroidal carbonaceous fly-ash particles in shallow Danish lakes. J. Paleolim. 8: 171–187.Google Scholar
  53. Olsson, S., 1991. Geochemistry, mineralogy and porewater composition in uplifted, Late Weichselian-Early Holocene clays from southern Sweden. Lundqua Thesis 28, 89 pp.Google Scholar
  54. Persson, A., 1987. Aspect on land use in Bussjö village in Bromma parish and Herrestad hundred in Scania c:a 1670–1910. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 20 pp.Google Scholar
  55. Postma, D., 1981. Formation of siderite and vivanite and the pore-water composition of a recent bog sediment in Denmark. Chem. Geol. 31: 225–244.Google Scholar
  56. Regnéll, J., 1989. Vegetation and land-use during 6000 years. Palaeoecology of the cultural landscape at two lake sites in southern Skåne, Sweden. Lundqua Thesis 27, 62 pp.Google Scholar
  57. Regnéll, J., 1992. Preparing pollen concentrates for AMS dating — a methodological study from a hard-water lake in southern Sweden. Boreas 21: 373–377.Google Scholar
  58. Renberg, I. & M. Wik, 1985. Soot particle counting in recent lake sediments: An indirect dating method. Ecol. Bull. 37: 53–57.Google Scholar
  59. Robison, S. G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. 42: 22–47.Google Scholar
  60. Rudd, J. W., C. A. Kelly, V. St. Louis, R. H. Hesslein, A. Furutani & M. H. Hokola, 1986. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31(6): 1267–1280.Google Scholar
  61. Stober, J. C. & R. Thompson, 1979. Magnetic remanence acquisition in Finnish lake sediments. Geophys. J. R. Astr. Soc. 57: 727–739.Google Scholar
  62. Stumm, W. & P. Baccini, 1978. Man-Made Chemical Perturbations of Lakes; In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag. New York: 91–126.Google Scholar
  63. Supra 1989: Gödsel-och kalkningsmedel. Innehåll av växtnäring. Information folder from the Supra Company.Google Scholar
  64. Swain, E. B., 1985. Measurement and interpretation of sedimentary plant pigments. Freshwat. Biol. 15: 53–75.Google Scholar
  65. Thompson, R. & F. Oldfield, 1986. Environmental Magnetism. Allen & Unwin, London, 227 pp.Google Scholar
  66. Troedsson, T. & M. Wiberg, 1986. Sveriges jordmåner (Soil map of Sweden). Kungl. Skogs-o. Lantbruksakademien. Stockholm.Google Scholar
  67. Wetzel, R. G., 1983. Limnology. Saunders College Publishing. Philadelphia, 760 pp.Google Scholar
  68. Zachrison, A., 1914. Gödsling och jordförbättring i Skåne från 1800-talets början till nuvarande tid. Skrifter utgivna av de skånska hushållningssällskapen vid deras hundraårsjubileum år 1914. 55 pp.Google Scholar
  69. Zachrison, A., 1922. Nyodling, torrläggning och bevattning i Skåne 1800–1914. Skrifter utgivna av de skånska hushållningssällskapen med anledning av deras hundraårsjubileum år 1914. II–4. 33 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Siv Olsson
    • 1
  • Joachim Regnéll
    • 1
  • Anders Persson
    • 2
  • Per Sandgren
    • 1
  1. 1.Department of Quaternary GeologyLund UniversityLundSweden
  2. 2.Department of HistoryLund UniversityLundSweden

Personalised recommendations