International Journal of Computer Vision

, Volume 23, Issue 2, pp 185–198 | Cite as

The Quadric Reference Surface: Theory and Applications

  • Amnon Shashua
  • Sebastian Toelg
Article

Abstract

The conceptual component of this work is about “reference surfaces” which are the analogous to reference frames often used for shape representation purposes. The theoretical component of this work involves the question of whether one can find a unique (and simple) mapping that aligns two arbitrary perspective views of an opaque textured quadric surface in 3D, given (i) few corresponding points in the two views, or (ii) the outline conic of the surface in one view (only) and few corresponding points in the two views. The practical component of this work is concerned with applying the theoretical results as tools for the task of achieving full correspondence between views of arbitrary objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E. H. and Bergen, J. R. 1985. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, 2:284-299.Google Scholar
  2. Bergen, J. R. and Hingorani, R. 1990. Hierarchical motion-based frame rate conversion. Technical Report, David Sarnoff Research Center.Google Scholar
  3. Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. 1992. Hierarchical model-based motion estimation. In Proceedings of the European Conference on Computer Vision, Santa Margherita Ligure, Italy.Google Scholar
  4. Beymer, D., Shashua, A., and Poggio, T. 1993. Example based image analysis and synthesis. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, A. I. Memo 1431.Google Scholar
  5. Faugeras, O. D. 1992. What can be seen in three dimensions with an uncalibrated stereo rig? In Proceedings of the European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 563- 578.Google Scholar
  6. Faugeras, O. D., Luong, Q. T., and Maybank, S. J. 1992. Camera self calibration: Theory and experiments. In Proceedings of the European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 321-334.Google Scholar
  7. Hartley, R., Gupta, R., and Chang, T. 1992. Stereo from uncalibrated cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Champaign, IL, pp. 761-764.Google Scholar
  8. Hartley, R. and Gupta, R. 1993. Computing matched-epipolar projections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, pp. 549-555.Google Scholar
  9. Horn, B. K. P. 1990. Relative orientation. International Journal of Computer Vision, 4:59-78.Google Scholar
  10. Irani, M., Rousso, B., and Peleg, S., 1993. Robust recovery of egomotion. In Computer Analysis of Images and Patterns (Proc. of CAIP'93), D. Chetverikov and W. Kropatsch (Eds.) Springer: Budapest, Hungary, pp. 371-378.Google Scholar
  11. Jacobs, D. W. 1993. Generalizing invariants for 3-D to 2-D matching. In Proceedings of the 2nd European Workshop on Invariants, Ponta Delagada, Azores.Google Scholar
  12. Koenderink, J. J. and Van Doorn, A. J. 1991. Affine structure from motion. Journal of the Optical Society of America, 8:377-385.Google Scholar
  13. Kumar, R. and Anandan, P. 1994. Direct recovery of shape from multiple views: A parallax based approach. In Proceedings of the International Conference on Pattern Recognition, Jerusalem, Israel.Google Scholar
  14. Lucas, B. D. and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings IJCAI, Vancouver, Canada, pp. 674-679.Google Scholar
  15. Luong, Q. T., Deriche, R., Faugeras, O. D., and Papadopoulo, T. 1993. On determining the fundamental matrix: Analysis of different methods and experimental results. Technical Report, INRIA, France.Google Scholar
  16. Mallot, H. A., Bülthoff, H. H., Little, J. J., and Bohrer, S. 1991. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64:177-185.Google Scholar
  17. Marr, D. and Ullman, S. 1981. Directional selectivity and its use in early visual processing. Proceedings of the Royal Society of London B, vol. 211, pp. 151-180.Google Scholar
  18. Maybank, S. J. 1990. The projective geometry of ambiguous surfaces. Proceedings of the Royal Society of London, vol. 332, pp. 1-47.Google Scholar
  19. Mitchison, G. J. and McKee, S. P. 1985. Interpolation in stereoscopic matching. Nature, 315:402-404.Google Scholar
  20. Prazdny, K. 1986. 'Capture' of stereopsis by illusory contours. Nature, 324:393.Google Scholar
  21. Ramachandran, V. S. 1986. Capture of stereopsis and apparent motion by illusory contours. Perception and Psychophysics, 39:361-373.Google Scholar
  22. Ramachandran, V. S. and Cavanagh, P. 1985. Subjective contours capture stereopsis. Nature, 317:527-530.Google Scholar
  23. Ramachandran, V. S. and Inada, V. 1985. Spatial phase and frequency in motion capture of random-dot patterns. Spatial Vision, 1:57-67.Google Scholar
  24. Robert, L. and Faugeras, O. D. 1993. Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair. In Proceedings of the International Conference on Computer Vision, Berlin, Germany, pp. 540-544.Google Scholar
  25. Sawhney, H. S. 1994. 3D geometry from planar parallax. Technical Report, IBM Almaden Research Center.Google Scholar
  26. Shashua, A. 1991. Correspondence and affine shape from two orthographic views: Motion and recognition. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, A. I. Memo No. 1327.Google Scholar
  27. Shashua, A. 1992a. Geometry and Photometry in 3D Visual Recognition. Ph. D. Thesis, M. I. T Artificial Intelligence Laboratory, AITR-1401.Google Scholar
  28. Shashua, A. 1992b. Illumination and view position in 3D visual recognition. In Advances in Neural Information Processing Systems 4, S. J. Hanson, J. E. Moody, and R. P. Lippmann (Eds.), San Mateo, CA, Morgan Kaufmann Publishers. Proceedings of the Fourth Annual Conference NIPS, Denver, CO, pp. 404-411.Google Scholar
  29. Shashua, A. 1994a. On geometric and algebraic aspects of 3D affine and projective structures from perspective 2D views. In Applications of Invariance in Computer Vision, J. L. Mundy, A. Zisserman, and D. Forsyth (Eds.), Springer-Verlag: LNCS 825. Proc. of the 2nd European Workshop on Invariants, Ponta Delagada, Azores, Oct. 1993.Google Scholar
  30. Shashua, A. 1994b. Projective structure from uncalibrated images: Structure from motion and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8):778- 790.Google Scholar
  31. Shashua, A. 1997. On photometric issues in 3D visual recognition from a single 2D image. International Journal of Computer Vision, 21(1/2):99-122.Google Scholar
  32. Shashua, A. and Toelg, S. 1994. The quadric reference surface: Applications in registering views of complex 3D objects. In Proceedings of the European Conference on Computer Vision, Stockholm, Sweden.Google Scholar
  33. Shashua, A. and Navab, N. 1996. Relative affine structure: Canonical model for 3D from 2D geometry and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):873- 883.Google Scholar
  34. Storjohann, K., Zielke, Th., Mallot, H. A., and von Seelen, W. 1990. Visual obstacle detection for automatically guided vehicles. In Proceedings of IEEE Conference on Robotics and Automation, Los Alamitos, CA, pp. 761-766.Google Scholar
  35. Van Santen, J. P. H. and Sperling, G. 1985. Elaborated Reichardt detectors. Journal of the Optical Society of America, 2:300- 321.Google Scholar
  36. Zheng, Y., Jones, D. G., Billings, S. A., Mayhew, J. E. W., and Frisby, J. P. 1990. Switcher: A stereo algorithm for ground plane obstacle detection. Image and Vision Computing, 8:57-62.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Amnon Shashua
    • 1
  • Sebastian Toelg
    • 2
  1. 1.The Institute of Computer ScienceHebrew UniversityJerusalemIsrael
  2. 2.Zentrum Fuer Neuroinformatik GmbHBochumGermany

Personalised recommendations