Virus Genes

, Volume 16, Issue 1, pp 95–109 | Cite as

Molecular Ecology and Evolution of Streptococcus thermophilus Bacteriophages—a Review

  • Harald Brüssow
  • Anne Bruttin
  • Frank Desiere
  • Sacha Lucchini
  • Sophie Foley
Article

Abstract

Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage φSfi21 revealed many predicted proteins which showed homology with phages from Lactococcus lactis suggesting horizontal gene transfer. Homology with phages from evolutionary unrelated bacteria like E. coli (e.g. lambdoid phage 434 and P1) and Mycobacterium φL5 was also found. Due to their industrial importance, the existence of large phage collections, and the whole phage genome sequencing projects which are currently underway, the S. thermophilus phages may present an interesting experimental system to study bacteriophage evolution.

Streptococcus thermophilus phage evolution deletions point mutations horizontal gene transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Botstein D., Ann NY Acad Sci 354, 484-491, 1980.Google Scholar
  2. 2.
    Casjens S., Hatful G., and Hendrix R., Sem Virol 3, 383-397, 1992.Google Scholar
  3. 3.
    Kutter E., Gachechiladze K., Poglazov A., Marusich E., Shneider M., Aronsson P., Napuli A., Porter D., and Mesyanzhinov V., Virus Genes 11, 285-297, 1996.Google Scholar
  4. 4.
    Repoila F., Tétat F., Bouet J.-Y., and Krisch H.M., EMBO J 13, 4181-4192, 1994.Google Scholar
  5. 5.
    Everson, T.C., Bull. Intern Dairy Fed 263, 24-28, 1991.Google Scholar
  6. 6.
    Peitersen, N., Bull. Intern Dairy Fed 263, 1-43, 1991.Google Scholar
  7. 7.
    Hill C., FEMS Microbiol Rev 12, 87-108, 1993.Google Scholar
  8. 8.
    Daly C., Fitzgerald G.F., and Davis R. in Venema G. (ed.) Lactic Acid Bacteria: Genetics, Metabolism and Application. Kluwer Acad. Publisher Dordrecht, 1996, pp. 3-14.Google Scholar
  9. 9.
    Caldwell S.L., McMahon D.J., Oberg C.J., and Broadbent J.R., Appl Environ Microbiol 62, 936-941, 1996.Google Scholar
  10. 10.
    Accolas J.-P. and Spillmann H., J., Appl Bacteriol 47, 135-144, 1979.Google Scholar
  11. 11.
    Prevots F., Relano P., Mata M., and Ritzenthaler P., J Gen Microbiol 135, 3337-3344, 1989.Google Scholar
  12. 12.
    Neve H., Krusch U., and Teuber M., Appl Microbiol Biotechnol 30, 624-629, 1989.Google Scholar
  13. 13.
    Benbadis L., Faelen M., Slos P., Fazel A., and Mercenier A., Biochimie 72, 855-862, 1990.Google Scholar
  14. 14.
    Larbi D., Colurin C., Ronselle L., Decaris B., and Simonet J.M., Lait 70, 107-116, 1990.Google Scholar
  15. 15.
    Fayard B., University of Nancy, thesis 1993.Google Scholar
  16. 16.
    Sebastiani H. and Jäger H., Milchwissenschaft 48, 25-29, 1992.Google Scholar
  17. 17.
    Sozzi T., Maret R., and Poulin J.M., Appl Environ Microbiol 32, 131-137, 1976.Google Scholar
  18. 18.
    Brüssow H., Frémont M., Bruttin A., Sidoti J., Constable A., and Fryder V., Appl Environ Microbiol 60, 4537-4543, 1994.Google Scholar
  19. 19.
    Carminati D. and Giraffa G., J Dairy Res. 59, 71-79, 1992.Google Scholar
  20. 20.
    Fayard B., Haefliger M., and Accolas J.-P., J Dairy Res. 60, 385-399, 1993.Google Scholar
  21. 21.
    Brüssow H. and Bruttin A., Virology 212, 632-640, 1995.Google Scholar
  22. 22.
    Brüssow H., Probst A., Frémont M., and Sidoti J, Virology 200, 854-857, 1994.Google Scholar
  23. 23.
    Singer B.S. and Westlye J., J Mol Biol 202, 233-243, 1988.Google Scholar
  24. 24.
    Davis R.W. and Parkinson J.S., J Mol Biol 56, 403-429, 1971.Google Scholar
  25. 25.
    Bruttin A. and Brüssow H., Virology 219, 96-104, 1996.Google Scholar
  26. 26.
    Highton P.J., Chang Y., and Myers R.J., Mol Microbiol 4, 1329-1340, 1990.Google Scholar
  27. 27.
    Larbi D., Decaris B., and Simonet J.-M., J Dairy Res 59, 349- 357, 1992.Google Scholar
  28. 28.
    Moineau S., Walker S.A., Holler B.J., Vedamuthu E.R., and Vandenbergh P.A., Appl Environ Microbiol 61, 2461-2466.Google Scholar
  29. 29.
    Boyce J.D., Davidson B.E., and Hillier A.J., Appl Environ Microbiol 61, 4089-4098, 1995.Google Scholar
  30. 30.
    Kim S.G. and Batt C.A. Gene 98, 95-100, 1991.Google Scholar
  31. 31.
    Kim S.G., Bor Y.-C., and Batt C.A. J Dairy Sci 75, 1761-1767, 1992.Google Scholar
  32. 32.
    Mondragon A., Subbiah S., Almo S.C., Drottar M., and Harrison S.C., J Mol Biol 205, 189-200, 1989.Google Scholar
  33. 33.
    Birkeland N.-K. Can J Microbiol 40, 658-665, 1994.Google Scholar
  34. 34.
    Ziegelin G., Scherzinger E., Lurz R., and Lanka E. EMBO J 12, 3703-3708, 1993.Google Scholar
  35. 35.
    Hatfull G.F. and Sarkis G.J., Mol Microbiol 7, 395-405, 1993.Google Scholar
  36. 36.
    Martin A.C., Lopez R., and Garcia P., J Viro l 70, 3678-3687, 1996.Google Scholar
  37. 37.
    Lopez R., Garcia J.L., Garcia E., Ronda C., and Garcia P., FEMS Microbiol Lett 100, 439-448, 1992.Google Scholar
  38. 38.
    Wood B.J.B. and Holzapfel W.H. The genera of lactic acid bacteria. Blackie Academic and Professional, Glasgow 1992.Google Scholar
  39. 39.
    Schleifer K.H., Kraus J., Dvorak C., Klippe-Bälz R., Collins M.D., and Fischer W., System. Appl Microbiol 6, 183-195, 1985.Google Scholar
  40. 40.
    Jarvis A.W., Appl Environ Microbiol 47, 343-349, 1984.Google Scholar
  41. 41.
    Le Marrec C., van Sinderen D., Walsh L., Stanley E., Vlegels E., Moineau S., Heinze P., Fitzgerald G., and Fayard B., Appl Environ Microbiol 63, 3246-3253, 1997.Google Scholar
  42. 42.
    Neve H., Zenz K.I., Desiere F., Koch A., Heller K.J., and Brüssow H., Virology in press.Google Scholar
  43. 43.
    Stanley E., Fitzgerald G.F., Le Marrec C., Fayard B., and van Sinderen D., Microbiology 143, 3417-3429, 1997.Google Scholar
  44. 44.
    Bruttin A., Desiere F., Lucchini S., Foley S., and Brüssow H., Virology 233, 136-148, 1997.Google Scholar
  45. 45.
    Desiere F., Lucchini S., Bruttin A., Zwahlen M.-C., and Brüssow, Virology 234, 372-382, 1997.Google Scholar
  46. 46.
    Desiere F., Lucchini S., and Brüssow H., Virology in press.Google Scholar
  47. 47.
    Bruttin A., Desiere F., d'Amico N., Guérin J.-P., Sidoti J., Huni B., and Brüssow H., Appl Environ Microbiol 63, 3144-3150, 1997.Google Scholar
  48. 48.
    Bruttin A., Foley S., and Brüssow H., Virology 237, 148-158, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Harald Brüssow
    • 1
  • Anne Bruttin
    • 1
  • Frank Desiere
    • 1
  • Sacha Lucchini
    • 1
  • Sophie Foley
    • 1
  1. 1.Switzerland

Personalised recommendations