Journal of Paleolimnology

, Volume 18, Issue 4, pp 365–393 | Cite as

Hydrologic and climatic implications of a multidisciplinary study of late Holocene sediment from Kenosee Lake, southeastern Saskatchewan, Canada

  • R. E. Vance
  • W. M. Last
  • A. J. Smith


Sediment lithology and mineralogy, as well as ostracode, plant macrofossil and stable isotope stratigraphies of lake sediment cores, are used to reconstruct late Holocene hydrologic changes at Kenosee Lake, a relatively large, hyposaline lake in southeastern Saskatchewan. Chronological control is provided by AMS radiocarbon ages of upland and shoreline plant macrofossils. All indicators outline an early, low-water, saline phase of lake history (4100–3000 BP), when the basin was occupied by a series of small, interconnected, sulfate-rich brine pools, as opposed to the single, topographically-closed lake that exists today. A rapid rise in lake-level (3000–2300 BP) led to the establishment of carbonate-rich, hyposaline lake conditions like those today. Lithostratigraphic data and ostracode assemblages indicate peak salinities were attained early in this period of lake infilling, suggesting that the lake-level rise was initially driven by an influx of saline groundwater. Lake-level and water chemistry have remained relatively stable over the last 2000 years, compared to earlier events. Because of a lack of datable organic material in sediments deposited during the last 2000 years, the chronology of recent events is not well resolved. Plant macrofossil, lithostratigraphic and ostracode evidence suggests that lake draw-down, accompanied by slightly higher than present salinites, occurred sometime prior to 600 BP, followed by peak lake-level and freshwater conditions. This most recent high lake stand, indicative of a high water table on the surrounding upland, may also have led to the establishment of an extensive cover of Betula in the watershed, possibly in response to paludification. Ostracode assemblages indicate that peak freshwater conditions occurred within the last 100 years. Since historically documented lake-level fluctuations correlate with decadal scale climatic fluctuations in the meteorological record, and late-Holocene hydrologic dynamics correspond to well documented climatic excursions of the Neoglacial and Little Ice Age, Kenosee Lake dynamics offer insight into the susceptibility of the region's water resources to climate change.

Great Plains mineralogy ostracodes paleohydrology plant macrofossils stable isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaston, M., 1983. Report on Kenosee Lake and White Bear Lake Water Levels. Unpublished report, Investigations Division, Hydrology Branch, Saskatchewan Environment, 35 pp.Google Scholar
  2. Aaston, M. & E. Light, 1986. Kenosee Lake: Impact of Water Uses on Lake Water Levels. Unpublished report, Saskatchewan Water Corporation, Hydrology Service, 8 pp.Google Scholar
  3. Beijerinck, W., 1976. Zadenatlas der Nederlandsche Flora: Ten Behoeve van de Botanie, Palaeontologie, Bodemcultuur en Warenkennis. Backhuys & Meesters, Amsterdam, 316 pp.Google Scholar
  4. Blair, D. & W. F. Rannie, 1994. 'Wading to Pembina': 1849 spring and summer weather in the valley of the Red River of the north and some climatic implications. Great Plains Research 4: 3–26.Google Scholar
  5. Bradley, R. S. & P. D. Jones, 1993. ‘Little Ice Age’ summer temperature variations: their nature and releveance to global warming trends. The Holocene 3: 367–376.Google Scholar
  6. Bryson, R. A., 1966. Air masses, streamlines, and the boreal forest. Geogr. Bull. 8: 228–269.Google Scholar
  7. Colman, S. M., G. A. Jones, R. M. Forester & D. S. Foster, 1990. Holocene paleoclimatic evidence and sedimentation rates from a core in southwestern Lake Michigan. J. Paleolimnol. 4: 269–284.Google Scholar
  8. Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. sed. Petrol. 44: 242–248.Google Scholar
  9. Delorme, L. D., 1970a. Freshwater ostracodes of Canada, part II: subfamily Cypridopsinae and Herpetocypridinae, and family Cyclocyprididae. Can. J. Zool. 48: 253–266.Google Scholar
  10. Delorme, L. D., 1970b. Freshwater ostracodes of Canada, part III: family Candonidae. Can. J. Zool. 48: 253–266.Google Scholar
  11. Delorme, L. D., 1970c. Freshwater ostracodes of Canada, part IV: families Ilyocyprididae, Notodromadidae, Darwinulidae, Cytheredeidae, and Entocytheridae. Can. J. Zool. 48: 1251–1259.Google Scholar
  12. Delorme, L. D., 1971. Freshwater ostracodes of Canada, part V: families Limnocytheridae, Loxoconchidae. Can. J. Zool. 49: 43–64.Google Scholar
  13. Drimmie, R. J., A. R. Heemskerk & M. E. Patton, 1992. 13C and 18O in Carbonates. Technical Procedure 11.0, Rev. 01. Environmental Isotope Laboratory, Department of Earth Sciences, University of Waterloo, 10 pp.Google Scholar
  14. Environment Canada, 1991. NAQUADAT/ENVIRODAT Dictionary of Codes. Data Systems Section, Water Quality Branch, 195 pp.Google Scholar
  15. Environment Canada, 1993. Canadian Climate Normals, 1961–1990 (Vol. 2) Prairie Provinces. Canadian Climate Program, Ottawa, 266 pp.Google Scholar
  16. Ferris, S. A., 1985. Water Quality Study, Kenosee Lake. Unpublished Report, Water Pollution Control Branch, Saskatchewan Environment, 150 pp.Google Scholar
  17. Forester, R. M., 1983. Relationship of two lacustrine ostracode species to solute composition and salinity: implications for paleohydrochemistry. Geology 11: 435–538.Google Scholar
  18. Forester, R. M., 1987. Late Quaternary paleoclimate records from lacustrine ostracodes. In W. Ruddiman & H. E. Wright (eds), North America and Adjacent Oceans During the Last Deglaciation. The Geology of North America, Geol. Soc. Am. K-3: 261–276.Google Scholar
  19. Francis, D. R., 1996. Bryozoan statoblasts in the recent sediments of Douglas Lake, Michigan. J. Paleolimnol. in press.Google Scholar
  20. Fritz, S. C., D. R. Engstrom & B. J. Haskell, 1994. ‘Little Ice Age’ aridity in the North American Great Plains: a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA. The Holocene 4: 69–73.Google Scholar
  21. Fritz, S. C., D. R. Engstrom & B. J. Haskell, 1996. Nineteenth-century climate in the Devils lake region as reconstructed from palaeolimnological proxies: a reply to Wiche, Lent and Rannie. The Holocene 6: 490–493.Google Scholar
  22. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  23. Furtos, N. C., 1933. The Ostracoda of Ohio. Ohio Biol. Surv. Bull. 5: 413–524.Google Scholar
  24. Greenberg, A. E., L. S. Clesceri, A. D. Eaton & M. H. Franson, 1992. Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C.Google Scholar
  25. Goldsmith, J. R. & D. L. Graf, 1958. Relation between lattice constants and composition of the Ca-Mg carbonates. Am. Mineral. 43: 84–101.Google Scholar
  26. Halsey, L. A., D. H. Vitt & S. C. Zoltai, 1995. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Climatic Change 30: 57–73.Google Scholar
  27. Hammer, U. T. & J. M. Heseltine, 1988. Aquatic macrophytes in saline lakes of the Canadian prairies. Hydrobiologia 158: 101–116.Google Scholar
  28. Hardy, R. & M. Tucker, 1988. X-ray powder diffraction of sediments. In Tucker, M. (ed.) Techniques in Sedimentology. Blackwell Scientific Publications, 191–228.Google Scholar
  29. Haskell, B. J., S. C. Fritz & D. R. Engstrom, 1996. Late Quaternary paleohydrology in the North American Great Plains inferred from the geochemistry of endogenic carbonate and fossil ostracodes from Devils Lake, North Dakota, USA. Palaeogeogr. Palaeoclim. Palaeoecol. 124: 179–193.Google Scholar
  30. Hickman, M. & C. E. Schweger, 1996. The Late-Quaternary palaeoenvironmental history of a presently deep freshwater lake in east-central Alberta, Canada and palaeoclimate implications. Palaeogeogr. Palaeoclim. Palaeoecol. 123: 161–178.Google Scholar
  31. Hoff, C. C., 1942. The ostracods of Illinois, their biology and taxonomy. III. Biol. Monograph 19: 1–196.Google Scholar
  32. Hughes, M. K. & H. F. Diaz, 1994. Was there a ‘Medieval Warm Period’, and if so, where and when? Climatic Change 26: 109–142.Google Scholar
  33. Husband, B. C. & M. Hickman, 1985. Growth and biomass allocation of Ruppia occidentalis in three lakes, differing in salinity. Can. J. Bot. 63: 2004–2014.Google Scholar
  34. Hutchinson, G. E., 1975. A Treatise on Limnology. Volume III, Limnological Botany. John Wiley & Sons, New York, 660 pp.Google Scholar
  35. Jealous, B., 1989. Moose Mountain Provincial Park Groundwater Evaluation, Kenosee Lake, Saskatchewan. Unpublished Report, Clifton Associates Ltd., Regina, 18 pp.Google Scholar
  36. Kantrud, H. A., J. B. Millar & A. C. Van Der Valk, 1989. Vegetation of wetlands of the prairie pothole region. In van der Valk, A. (ed.), Northern Prairie Wetlands. Iowa State University Press, Ames: 132–187.Google Scholar
  37. Kantrud, H. A., 1990. Sago Pondweed (Potamogeton pectinatus L.): A Literature Review. United States Dept. of the Interior, Fish and Wildl. Serv., Resource Publication 176, Washington, D.C., 89 pp.Google Scholar
  38. Kantrud, H. A., 1991. Wigeongrass (Ruppia maritima L.): A Literature Review. U.S. Fish Wildl. Ser., Fish Wildl. Res. 10, Washington, D.C., 58 pp.Google Scholar
  39. Karl, T. R., R. R. Heim, Jr. & R. G. Quayle, 1991. The greenhouse effect in central North America: if not now, when? Science 251: 1058–1061.Google Scholar
  40. Karl, T. R. & R. R. Heim, Jr., 1991. The greenhouse effect in central North America: if not now, when? In Wall, G. (ed.), Symposium on the Impacts of Climatic Change and Variability on the Great Plains. Department of Geography Publication Series, Occasional Paper No. 12, University of Waterloo: 19–29.Google Scholar
  41. Keller, C. P., G. S. McCarthy & J. L. Richardson, 1986. Mineralogy and stability of soil evaporites in North Dakota. Soil Sci. Soc. Am. J. 50: 1069–1071.Google Scholar
  42. Kovach, W. L., 1990. Multivariate Statistical Package Plus, version 2, Aberystwyth, Wales.Google Scholar
  43. Lamb, H. H., 1981. Some aspects of cold, disturbed climate of recent centuries, the ‘Little Ice Age’, and similar occurrences. In Liljequist, G. H. (ed.), Weather and Weather Maps, A Volume Dedicated to the Memory of Tor Bergeron. Contributions to Current Research in Geophysics, Vol. 10, Birkhauser Verlag; Basel, Boston, Stuttgart: 628–639.Google Scholar
  44. Laird, K. R., S. C. Fritz, E. C. Grimm & P. G. Mueller, 1996a. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnol. Oceanogr. 41: 890–902.Google Scholar
  45. Laird, K. R., S. C. Fritz, K. A. Maasch & B. F. Cumming, 1996b. Greater drought intensity and frequency before AD 1200 in the northern Great Plains, USA. Nature 384: 552–554.Google Scholar
  46. Last, W. M., 1989. Continental brines and evaporites of the northern Great Plains of Canada. Sed. Geol. 64: 207–221.Google Scholar
  47. Last, W. M., 1996. Bulk composition, texture, and mineralogy of Lake Winnipeg core and grab surface samples. In Todd, B. J., C. F. M. Lewis, L. H. Thorleifson & E. Neilson (eds), Lake Winnipeg Project: Cruise Report and Scientific Results. Geological Survey of Canada Open File Report 3113: 209–220.Google Scholar
  48. Last, W. M. & T. H. Schweyen, 1983. Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105: 245–263.Google Scholar
  49. Last, W. M. & R. E. Vance, 1997. Bedding characteristics of Holocene sediments from salt lakes of the northern Great Plains, western Canada. J. Paleolimnol.Google Scholar
  50. Leonard, E. M., 1986. Use of lacustrine sedimentary sequences as indicators of Holocene glacial history, Banff National Park, Alberta, Canada. Quat. Res. 26: 218–231.Google Scholar
  51. Luckman, B. H., G. Holdsworth & G. D. Osborn, 1993. Neoglacial glacier fluctuations in the Canadian Rockies. Quat. Res. 39: 144–153.Google Scholar
  52. Luckman, B. H., 1995. Calendar-dated, early ‘Little Ice Age’ glacier advance at Robson Glacier, British Coulmbia, Canada. The Holocene 5: 149–159.Google Scholar
  53. Looman, J. & K. F. Best, 1979. Budd's Flora of the Canadian Prairie Provinces. Research Branch, Agriculture Canada, Publication 1662, Hull, 863 pp.Google Scholar
  54. Marquart, R. G., 1986. µPDSM: Mainframe search/match on an IBM PC. Powder Diffraction 1: 34–36.Google Scholar
  55. Martin, A. C. & W. D. Barkley, 1961. Seed Identification Manual. University of California Press, Berkeley, 220 pp.Google Scholar
  56. Montgomery, F. H., 1977. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto, 232 pp.Google Scholar
  57. Moss, E. H., 1983. The Flora of Alberta. 2nd edition. University of Alberta Press, Edmonton, 687 pp.Google Scholar
  58. Mott, R. J., 1973. Palynological studies in central Saskatchewan. Pollen stratigraphy from lake sediment sequences. Geological Survey of Canada Paper 72-49, 18 pp.Google Scholar
  59. Oehrle, S. A., 1994. Versatility of capillary electrophoresis of anions with a high-mobility chromate electrolyte. J. Chromatogr. 671: 383–387.Google Scholar
  60. Overpeck, J. T., III Webb & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the methods of modern analogues. Quat. Res. 23: 87–108.Google Scholar
  61. Pielou, E. C., 1984. The Interpretation of Ecological Data, John Wiley & Sons, New York: 40–62.Google Scholar
  62. Rannie, W. F., 1983. Breakup and freezeup of the Red River at Winnipeg, Manitoba Canada in the 19th century and some climatic implications. Climatic Change 5: 283–296.Google Scholar
  63. Reynolds, J. D. & S. C. Reynolds, 1975. Aquatic angiosperms of some British Columbia saline lakes. Syesis 8: 291–295.Google Scholar
  64. Risser, P. G., E. C. Birney, H. D. Blocker, S. W. May, W. J. Parton & J. A. Weins, 1981. The True Prairie Ecosystem. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania, 557 pp.Google Scholar
  65. Romano, J. P. & J. Krol, 1993. Capillary ion electrophoresis, an environmental method for determination of anions in water. J. Chromatogr. 640: 403–412.Google Scholar
  66. Rozkowska, A. D. & A. Rozkowski, 1969. Seasonal changes of slough and lake water chemistry in southern Saskatchewan. J. Hydrol. 7: 1–13.Google Scholar
  67. Rozkowski, A., 1969. Chemistry of Ground and Surface Waters in the Moose Mountain Area, Southern Saskatchewan. Geological Survey of Canada Paper 67-9, 71 pp.Google Scholar
  68. Sauchyn, D. J., 1994. White Bear Lake relict tree stump project. Unpublished report, Prairie Farm Rehabilitation Administration, 4 pp.Google Scholar
  69. Sauchyn, M. A. & D. J. Sauchyn, 1991. A continuous record of Holocene pollen from Harris Lake, southwestern Saskatchewan, Canada. Palaeogeogr. Palaeoclim. Palaeoecol. 88: 12–23.Google Scholar
  70. Saunders, I. R. & J. M. Byrne, 1994. Annual and seasonal climate and climatic changes in the Canadian Prairies simulated by the CCC GCM. Atmos. Ocean 32: 621–641.Google Scholar
  71. Schultz, L. G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale, U.S. Geol. Surv. Prof. Paper 391-C, 31 pp.Google Scholar
  72. Schweger, C. E. & M. Hickman, 1989. Holocene paleohydrology of central Alberta: testing the general-circulation-model climate simulations. Can. J. Earth Sci. 26: 1826–1833.Google Scholar
  73. Shay, J. M. & C. T. Shay, 1986. Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Can. J. Bot. 64: 443–454.Google Scholar
  74. Smith, A. J., 1987. The taxonomy and paleoecology of the Holocene freshwater Ostracoda of Pickerel Lake, South Dakota. M.S. Thesis, University of Delaware, 213 pp.Google Scholar
  75. Smith, A. J., 1991. Lacustrine ostracodes as paleohydrochemical indicators in Holocene lake records of the north-central United States. Ph.D. thesis, Brown University, Providence, R.I., 306 pp.Google Scholar
  76. Smith, A. J., 1993. Lacustrine ostracodes as hydrochemical indicators in lakes of the north-central United States. J. Paleolimnol. 8: 121–134.Google Scholar
  77. Smith, A. J & R. M. Forester, 1994. Estimating past precipitation and temperature from fossil ostracodes. Proceedings, The 5th Annual International High-Level Radioactive Waste Management Conference and Exposition, May, 1994, Las Vegas, Nevada, 2545–2552.Google Scholar
  78. Smith, A. J., J. J. Donovan, D. R. Engstrom, E. Ito, V. Panek & E. Gong, (in press). Climate driven hydrologic transients in Holocene lake records. PACLIM Symposium May, 1995.Google Scholar
  79. Smith, D. G., 1992. Vibracoring: recent innovations. J. Paleolimnol. 7: 137–143.Google Scholar
  80. Stuiver, M. & P. J. Reimer, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
  81. Teller, J. T. & W. M. Last, 1982. Pedogenic zones in postglacial sediment of Lake Manitoba, Canada. Earth Surf. Proc. Landform. 7: 367–379.Google Scholar
  82. Tukhanen, S., 1980. Climatic parameters and indices in plant geography. Acta Phytogeographica Suecica 67: 1–105.Google Scholar
  83. Turner, L. J., 1994. 210Pb dating of lacustrine sediments from Kenosee Lake (Core 056, Station KNS1), Saskatchewan. National Water Research Institute, Burlington, Ontario, Contribution 94-115, 24 pp.Google Scholar
  84. Ungar, I. A., 1974. Inland halophytes of the United States. In Reinold, R. J. & W. H. Queen (eds), Ecology of Halophytes. Academic Press, Inc., New York: 235–305.Google Scholar
  85. Vance, R. E., 1986. Aspects of the postglacial climate of Alberta: calibration of the pollen record. Geographie Phys. Quat. 40: 153–160.Google Scholar
  86. Vance, R. E., R. W. Mathewes & J. J. Clague, 1992. 7000 year record of lake-level change on the northern Great Plains: A highresolution proxy of past climate. Geology 20: 879–882.Google Scholar
  87. Vance, R. E., J. J. Clague & R. W. Mathewes, 1993. Holocene paleohydrology of a hypersaline lake in southeastern Alberta. J. Paleolimnol. 8: 103–120.Google Scholar
  88. Vance, R. E. & W. M. Last, 1994. Paleolimnology and global change on the Canadian prairies. In Current Research 1994-B: 49–58. Geological Survey of Canada, Ottawa.Google Scholar
  89. Vance, R. E., A. B. Beaudoin & B. H. Luckman, 1995. The paleoecological record of 6 ka BP climate in the Canadian prairie provinces. Geographie Phys. Quat. 49: 81–98.Google Scholar
  90. Van Zant, K., 1979. Late glacial and postglacial pollen and plant macrofossils from Lake Okoboji, northwestern Iowa. Quat. Res. 12: 358–380.Google Scholar
  91. Watts, W. A. & R. C. Bright, 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Geol. Soc. Am. Bull. 79: 855–876.Google Scholar
  92. Wiche, G. J., R. M. Lent & W. F. Rannie, 1996. ‘Little Ice Age’ aridity in the North American Great Plains – a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA: a comment on Fritz, Engstrom and Haskell. The Holocene 6: 489–490.Google Scholar
  93. Wilson, C., 1983. Some aspects of the calibration of early Canadian temperature records in the Hudson's Bay Company archives: a case study for summer season, eastern Hudson/James Bay, 1814 to 1821. In Harington, C. R. (ed.) Climatic Change in Canada 3. National Museum of Natural History, Syllogeus No. 49, Ottawa: 144–202.Google Scholar
  94. Winter, T. C., 1989. Hydrologic studies of wetlands in the northern prairie. In van der Valk, A. (ed.), Northern Prairie Wetlands. Iowa University Press, Ames: 17–54.Google Scholar
  95. Wright, H. E., Jr., 1980. Cores of soft lake sediments. Boreas 9: 107–114.Google Scholar
  96. Wulfeck, D. L., R. D. Blanchard & S. A. Oehrle. 1994. Environmental monitoring of wastewater using capillary ion electrophoresis. J. Chromatogr. 680: 645–652.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • R. E. Vance
    • 1
  • W. M. Last
    • 2
  • A. J. Smith
    • 3
  1. 1.Geological Survey of CanadaOttawaCanada
  2. 2.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  3. 3.Department of GeologyKent State UniversityKentUSA

Personalised recommendations