Journal of Paleolimnology

, Volume 17, Issue 3, pp 319–330 | Cite as

The relationship between glacial activity and sediment production: evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada

  • Eric M. Leonard


A 4450-year sequence of varves, spanning the entire Neoglacialinterval, has been recovered from Hector Lake, Alberta. The varve record is compared to records of regional glacial history toevaluate therelationship between alpine glacial activity and sediment production. Glacial controls on sediment production vary with the timescale considered. Long-term variations in sedimentation rate, of centuries to millennial duration, reflect changes in ice extent of the same timescale. Superimposed on these long-term changes is decadal-scale variability that is complexly related to upvalley ice extent. Over the short term, high sedimentation rates may be associated with glacier maximum stands, or with periods of glacier advance or recession. Overthe last millennium at least, highest sedimentation rates appear to have been associated with transitional periods, preceding or post-dating maximum ice stands, rather than with times of maximum ice extent.

varves glacial history Canadian Rocky Mountains Holocene Neoglaciation glaciolacustrine sediments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. T., J. D. Milliman, A. E. Jennings, N. Rynes & J. Dwyer, 1994. Sediment thickness and Holocene glacial marine sedimentation rates in three East Greenland fjords (ca. 68 °N). J. Geol. 102: 669–683.Google Scholar
  2. Bobrowsky, P. & N. W. Rutter, 1992. The Quaternary geologic history of the Canadian Rocky Mountains. Geog. Phys. Quat. 46: 5–50.Google Scholar
  3. Church, M. & J. M. Ryder, 1972. Paraglacial sedimentation; a consideration of fluvial processes conditioned by glaciation. Bull. Geol. Soc. Am. 83: 3059–3071.Google Scholar
  4. Clague, J. J., S. G. Evans, V. N. Rampton & G. J. Woodsworth, 1995. Improved age estimates for the White River and Bridge River tephras, western Canada. Can. J. Earth Sci. 32: 1172–1179.Google Scholar
  5. Desloges, J. R. & R. G. Gilbert, 1995. The sedimentary record of Moose Lake: implications for glacial activity in the Mount Robson area, British Columbia. Can. J. Earth Sci. 32: 65–78.Google Scholar
  6. Elverhoi, A., J. I. Svendsen, A. Solheim, E. S. Andersen, J. Milliman, J. Mangerud & R. L. Hooke, 1995. Late Quaternary sediment yield from the high Arctic Svalbard area. J. Geol. 103: 1–17.Google Scholar
  7. Gardner, J. S., 1972. Recent glacier activity and some associated landforms in the Canadian Rocky Mountains. In H. O. Slaymaker & H. J. McPherson (eds) Mountain geomorphology, Tantalus Press, Vancouver: 55–62.Google Scholar
  8. Gardner, J. S. & N. K. Jones, 1985. Evidence for a Neoglacial advance of the Boundary Glacier, Banff National Park, Alberta. Can. J. Earth Sci. 22: 1753–1755.Google Scholar
  9. Gilbert, R., 1975. Sedimentation in Lillooet Lake, British Columbia. Can. J. Earth Sci. 12: 1697–1711.Google Scholar
  10. Goudie, A., 1995. The changing earth. Blackwell, Oxford: 302 pp.Google Scholar
  11. Granar, L., 1956. Dating of recent fluvial sediments from the estuary of the Ångerman River. Geol. Fören. Förh. (Stockholm) 78: 654–658.Google Scholar
  12. Gurnell, A. M., 1987. Suspended sediment. In A. M. Gurnell & M. J. Clark (eds) Glacio-Fluvial Sediment Transfer. John Wiley and Sons Ltd., Chichester: 305–354.Google Scholar
  13. Hallet, B., L. Hunter & J. Bogen, 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Plan. Ch. 12: 213–235.Google Scholar
  14. Harbor, J. & J. Warburton, 1992. Glaciation and denudation rates. Nature 356: 751.Google Scholar
  15. Harbor, J. & J. Warburton, 1993. Relative rates of glacial and nonglacial erosion in alpine environments. Arct. Alp. Res. 25: 1–7.Google Scholar
  16. Heusser, C. J., 1956. Postglacial environments in the Canadian Rocky Mountains. Ecol. Mon. 26: 143–171.Google Scholar
  17. Hicks, D. M., M. J. McSaveney & T. J. H. Chinn, 1990. Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arct. Alp. Res. 22: 26–42.Google Scholar
  18. Jackson, L. E., Jr., N. W. Rutter, O. L. Hughes & J. J. Clague, 1989. Glaciated fringe. In R. J. Fulton (ed) Quaternary geology of Canada and Greenland. Geological Survey of Canada, Geology of Canada, 1: 63–68.Google Scholar
  19. Karlén, W., 1976. Lacustrine sediments and tree-limit variations as evidence of Holocene climatic fluctuations in Lappland, northern Sweden. Geog. Ann. 58A: 1–34.Google Scholar
  20. Karlén, W., 1981. Lacustrine sediment studies. Geog. Ann. 63A: 273–281.Google Scholar
  21. Karlén, W. & J. A. Matthews, 1992. Reconstructing Holocene glacier variations from glacial lake sediments: studies from Nordvestlandet and Jostedalsbreen-Jotunheimen, southern Norway. Geog. Ann. 74A: 327–348.Google Scholar
  22. Lawson, D. E., 1993. Glaciohydrologic and glaciohydraulic effects of runoff and sediment yield in glacierized basins. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory Monograph 93-2: 108 pp.Google Scholar
  23. Leeman, A. & F. Niessen, 1994. Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. Holocene 4: 259–268.Google Scholar
  24. Leonard, E. M., 1981. Glaciolacustrine sedimentation and Holocene glacial history, northern Banff National Park, Alberta. PhD dissertation, University of Colorado, Boulder, 271 pp.Google Scholar
  25. Leonard, E. M., 1985. Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Zeit. Glet. Glaz. 21: 35–42.Google Scholar
  26. Leonard, E. M., 1986a. Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat. Res. 25: 199–214.Google Scholar
  27. Leonard, E. M., 1986b. Use of lacustrine sedimentary sequences as indicators of Holocene glacial history, Banff National Park, Alberta, Canada. Quat. Res. 26: 218–231.Google Scholar
  28. Leonard, E. M., 1995. A varve-based calibration of the Bridge River tephra fall. Can. J. Earth Sci. 32: 2098–2102.Google Scholar
  29. Luckman, B. H., 1986. Reconstruction of Little Ice Age Events in the Canadian Rocky Mountains. Geog. Phys. Quat. 40: 17–28.Google Scholar
  30. Luckman, B. H., 1994. Evidence for climatic conditions between ca. 900–1300 A.D. in the southern Canadian Rockies. Clim. Ch. 26: 171–182.Google Scholar
  31. Luckman, B. H., 1995. Calendar-dated, early Little Ice Age glacier advance at Robson Glacier, British Columbia, Canada. Holocene 5: 149–159.Google Scholar
  32. Luckman, B. H., 1996. Reconciling the glacial and dendrochronological records for the last millennium in the Canadian Rockies. In R. S. Bradley, P. D. Jones & J. Jouzel (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer-Verlag, Berlin: 85–108.Google Scholar
  33. Luckman, B. H., in press. Dendroglaciology at Peyto Glacier, Alberta. In J. S. Dean, D. S. Meko & T. W. Swetnam (eds) Tree-rings, environment, and humanity. Radiocarbon, Tucson.Google Scholar
  34. Luckman, B. H., M. E. Colenutt & J. R. Reynolds, 1992. Field investigations in the Canadian Rockies in 1991. Report submitted to Parks Canada, Alberta Parks, and British Columbia Parks Service, April 1992.Google Scholar
  35. Luckman, B. H., G. Holdsworth & G. D. Osborn, 1993. Neoglacial glacier fluctuations in the Canadian Rockies. Quat. Res. 39: 144–155.Google Scholar
  36. Luckman, B. H. & G. D. Osborn, 1979. Holocene glacier fluctuations in the middle Canadian Rocky Mountains. Quat. Res. 11: 52–77.Google Scholar
  37. Molnar, P. & P. England, 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346: 29–34.Google Scholar
  38. Molnar, P. & P. England, 1992. Reply to Summerfield, M. A. and Kirkbride, M. P., 1992. Climate and landscape response: Nature 355: 306.Google Scholar
  39. Nesje, A., M. Kvamme, N. Rye & R. Lovlie, 1991. Holocene glacial and climate history of the Jostedalsbreen region, western Norway: evidence from lake sediments and terrestrial deposits: Quat. Sci. Rev. 10: 87–114.Google Scholar
  40. Osborn, G. & B. H. Luckman, 1988. Holocene glacier fluctuations in the Canadian Cordillera (Alberta and British Columbia). Quat. Sci. Rev. 7: 115–128.Google Scholar
  41. Østrem, G. & H. C. Olsen, 1987. Sedimentation in a glacial lake. Geog. Ann. 69A: 123–138.Google Scholar
  42. Reasoner, M. L., 1993. Equipment and procedure improvements for a lightweight, inexpensive percussion core sampling system. J. Paleolim. 8: 273–281.Google Scholar
  43. Reasoner, M. L., G. D. Osborn & N. W. Rutter, 1994. Age of the Crowfoot advance in the Canadian Rocky Mountains: a glacial event coeval with the Younger Dryas oscillation. Geology 22: 439–442.Google Scholar
  44. Smith, D. J., D. P. McCarthy & M. E. Colenutt, 1995. Little Ice Age glacial activity in Peter Lougheed and Elk Lakes provincial parks, Canadian Rocky Mountains. Can. J. Earth Sci. 32: 579–589.Google Scholar
  45. Smith, N. D., 1978. Sedimentary processes and patterns in a glacierfed lake with low sediment input. Can. J. Earth Sci. 15: 741–756.Google Scholar
  46. Smith, N. D. & G. M. Ashley, 1985. Proglacial lacustrine environment. In G. M. Ashley, J. Shaw & N. D. Smith (eds) Glacial sedimentary environments. Society of Economic Paleontologists and Mineralogists, Short Course 16: 135–215.Google Scholar
  47. Souch, C., 1994. A methodology to interpret downvalley lake sediments as records of Neoglacial activity: Coast Mountains, British Columbia, Canada. Geog. Ann. 76A: 169–185.Google Scholar
  48. Stuiver, M. & P. J. Reimer, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
  49. Summerfield, M. A. & M. P. Kirkbride, 1992. Climate and landscape response. Nature 355: 306.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Eric M. Leonard
    • 1
  1. 1.Department of GeologyColorado CollegeColorado SpringsUSA

Personalised recommendations