Virus Genes

, Volume 16, Issue 1, pp 25–38 | Cite as

Evolution of a Common Structural Core in the Internal Ribosome Entry Sites of Picornavirus

  • Shu-Yun Le
  • Jacob V. MaizelJr.


The translational control involving internal ribosome binding occurs in poliovirus (PV), human rhinoviruses (HRV), encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV), and hepatitis A virus (HAV). Internal ribosome binding utilizes cis-acting genetic elements of approximately 450 nucleotides (nt) termed the internal ribosome entry sites (IRES) found in these picornaviral 5′-untranslated region (5′UTR). Although these IRES elements are quite different in their primary sequence, a similar folding structure with a conserved 3′ structural core exists in the IRES. Phylogenetic analysis and RNA folding of the 5′ UTR of picornaviruses, including PV types 1–3, coxsackievirus types A and B, swine vesicular disease virus, echoviruses, enteroviruses (human and bovine), HRV, HAV, EMCV, mengovirus, Theiler’s murine encephalomyelitis viruses, FMDV, and equine rhinoviruses, indicates that the predicted conserved structural core is indeed a general structural feature for all members of the picornavirus family. The evolution of a common structural core likely occurred by the gradual addition or deletion of structural domains and elements to preserve a similar tertiary structure that facilitates the utilization of the IRES in specific host-cell environments.

internal ribosome entry site initiation of translation picornaviridae phylogeny evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pelletier J. and Sonenberg N., Nature 334, 320-325, 1988.Google Scholar
  2. 2.
    Nicholson R., Pelletier J., Le S.-Y., and Sonenberg N., J Virol 65, 5886-5894, 1991.Google Scholar
  3. 3.
    Jang S.K., Krausslich H.-G., Nicklin M.J.H., Duke G.M., Palmenberg A.C., and Wimmer E., J Virol 62, 2636-2643, 1988.Google Scholar
  4. 4.
    Jang S.K., Davies M.V., Kaufman R.J., and Wimmer E., J Virol 63, 1651-1660, 1989.Google Scholar
  5. 5.
    Bandyopadhyay P.K., Wang C., and Lipton H.L., J Virol 66, 6249-6256, 1992.Google Scholar
  6. 6.
    Borman A. and Jackson R.J., Virology 188, 685-696, 1992.Google Scholar
  7. 7.
    Kuhn R., Luz N., and Beck E., J Virol 64, 4625-4631, 1990.Google Scholar
  8. 8.
    Brown E.A., Day S.P., Jansen R.W., and Lemon S.M., J Virol 65, 5828-5838, 1991.Google Scholar
  9. 9.
    Glass M.J. and Summers D.F., Virilogy 193, 1047-1050, 1993.Google Scholar
  10. 10.
    Wimmer E., Hellen C.U.T., and Cao X., Annu Rev Genet 27, 353-436, 1993.Google Scholar
  11. 11.
    Ehrenfeld E. and Semler B., Curr Top Microbiol Immunol 203, 65-83, 1995.Google Scholar
  12. 12.
    Le S.-Y., Siddiqui A., and Maizel Jr. J.V., Virus Genes 12, 135-147, 1996.Google Scholar
  13. 13.
    Wilbur W.J. and Lipman D.J., Proc Natl Acad Sci USA 80, 726-730, 1983.Google Scholar
  14. 14.
    Le S.-Y. and Zuker M., J Mol Biol 216, 729-741, 1990.Google Scholar
  15. 15.
    Le S.-Y., Chen J.-H., and Maizel Jr. J.V., Nucl Acids Res 21, 2173-2178, 1993.Google Scholar
  16. 16.
    Felsenstein J., Annu Rev Genet 22, 521-565, 1988.Google Scholar
  17. 17.
    Reynolds J.E., Kaminski A., Kettinen H.J., Grace K., Clarke B.E., Carroll A.R., Rowlands D.J., and Jackson R.J., EMBO J 14, 6010-6020, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Shu-Yun Le
    • 1
  • Jacob V. MaizelJr.
    • 1
  1. 1.Laboratory of Mathematical Biology, Division of Cancer Biology Diagnosis and Centers, National Cancer InstituteFrederickMaryland

Personalised recommendations