Biotherapy

, Volume 11, Issue 2–3, pp 147–154

Oxidative Stress and Cancer: The Role of Redox Regulation

  • Shinya Toyokuni
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 1988; 85: 2706–08.Google Scholar
  2. 2.
    Fraga CG, Shigenaga MK, Park JW, Degan P and Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2 0 –deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990; 87: 4533–7.Google Scholar
  3. 3.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed., Oxford: Clarendon Press, 1989; 33–46.Google Scholar
  4. 4.
    Esterbauer H, Schauur JS, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991; 11: 81–128.Google Scholar
  5. 5.
    Uchida K, Stadtman ER. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 1992; 89: 4544–8.Google Scholar
  6. 6.
    Uchida K, Szweda LI, Chae H-Z, Stadtman ER. Immuno-chemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc Natl Acad Sci USA 1993; 90: 8742–6.Google Scholar
  7. 7.
    Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, Uchida K. The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 1995; 359: 189–91.Google Scholar
  8. 8.
    Luo XP, Yazdanpanah M, Bhooi N, Lehotay DC. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal Biochem 1995; 228: 294–8.Google Scholar
  9. 9.
    Kasai H, Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 1984; 12: 2137–45.Google Scholar
  10. 10.
    Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC. Hydroxyl free radical adducts of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1986; 1: 163–172.Google Scholar
  11. 11.
    Floyd RA. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 1990; 11: 1447–50.Google Scholar
  12. 12.
    Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S. DNA templates containing 8-hydroxydeoxyguanosine are misread both at the modified base and at adjacent residues. Nature 1987; 327: 77–9.Google Scholar
  13. 13.
    Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991; 349: 431–4.Google Scholar
  14. 14.
    Modrich P. Mechanisms and biological effects of mismatch repair. Ann Rev Genet 1991; 25: 229–53.Google Scholar
  15. 15.
    Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 1991; 10: 225–242.Google Scholar
  16. 16.
    Chaudhary AK, Nokubo M, Reddy GR, Yeola SN, Morrow JD, Blair IA, Marnett LJ. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 1994; 265: 1580–2.Google Scholar
  17. 17.
    Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 1996; 20: 553–66.Google Scholar
  18. 18.
    Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B: involvement of a cellular reducing catalyst thioredoxin. J Biol Chem 1993; 268: 11380–8.Google Scholar
  19. 19.
    Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 1990; 76: 655–63.Google Scholar
  20. 20.
    Wriggleworth JM, Baum H. The biochemical function of iron. In: Iron in biochemistry and medicine, II, A Jacobs, M Worwood, eds. London: Academic Press, 1980; 29–86.Google Scholar
  21. 21.
    deDuve C. Blue print for a cell: the nature and origin of life. Burlington, NC: Neil Patterson Publishers, 1991; 123–70.Google Scholar
  22. 22.
    Cotran RS, Kumar V, Robbins SL. Robbins Pathologic Basis of Disease. 4th ed., Philadelphia: WB Saunders, 1989; 239–305.Google Scholar
  23. 23.
    Niederau C, Fischer R, Sonnenberg A, Stremmel W, Trampisch HJ, Strohmyer G. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313: 1256–62.Google Scholar
  24. 24.
    Bradbear RA, Bain C, Siskind V, Schofield FD, Webb S, Azelsen EM, Halliday JW, Bassett ML, Powell LW. Cohort study of internal malignancy in genetic hemochromatosis and other chronic non-alcoholic liver diseases. J Natl Cancer Inst 1985; 75: 81–4.Google Scholar
  25. 25.
    Hsing AW, McLaughlin JK, Olsen JH, Mellemkjar L, Wacholder S, Fraumeni JF Jr. Cancer risk following primary hemochromatosis: a population-based cohort study in Denmark. Int J Cancer 1995; 60: 160–2.Google Scholar
  26. 26.
    Mossman BT, Bignon J, Corn M, Seaton A, Gee JBL. Asbestos: scientific developments and implications for public policy. Science 1990; 247: 294–301.Google Scholar
  27. 27.
    Stevens RG, Jones DY, Micozzi MS, Taylor PR. Body iron stores and the risk of cancer. N Engl J Med 1988; 319: 1047–52.Google Scholar
  28. 28.
    Richmond HG. Induction of sarcoma in the rat by iron-dextran complex. Br Med J 1959; i:947–949.Google Scholar
  29. 29.
    Okada S, Midorikawa O. Induction of rat renal adenocarcinoma by Fe-nitrilotriacetate (Fe-NTA). Jpn Arch Intern Med 1982; 29: 485–91.Google Scholar
  30. 30.
    Ebina Y, Okada S, Hamazaki S, Ogino F, Li J-L, Midorikawa O. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum-nitriotriacetate complexes in rats. J Natl Cancer Inst 1986; 76: 107–13.Google Scholar
  31. 31.
    Li J-L, Okada S, Hamazaki S, Ebina Y, Midorikawa O. Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res 1987; 47: 1867–9.Google Scholar
  32. 32.
    Mottola HA. Nitrilotriacetic acid as a chelating agent: applications, toxicology, and bio-environmental impact. Toxicol Environ Chem Rev 1974; 71: 99–161.Google Scholar
  33. 33.
    Anderson RL, Bishop WE, Campbell RL. A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit Rev Toxicol 1985; 15: 1–102.Google Scholar
  34. 34.
    Bates GW, Schlabach MR. The reaction of ferric salts with transferrin. J Biol Chem 1973; 248: 3228–32.Google Scholar
  35. 35.
    Okada S, Hamazaki S, Ebina Y, Li J-L, Midorikawa O. Nephrotoxicity and its prevention by vitamin E on ferric nitrilotriacetate-promoted lipid peroxidation. Biochim Biophys Acta 1987; 922: 28–33.Google Scholar
  36. 36.
    Hamazaki S, Okada S, Li J-L, Toyokuni S, Midorikawa O. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate. Arch Biochem Biophys 1989; 272: 10–7.Google Scholar
  37. 37.
    Toyokuni S, Okada S, Hamazaki S, Minamiyama Y, Yamada Y, Liang P, Fukunaga Y, Midorikawa O. Combined histochemical and biochemical analysis of sex hormone dependence of ferric nitrilotriacetate-induced renal lipid peroxidation in ddY mice. Cancer Res 1990; 50: 5574–80.Google Scholar
  38. 38.
    Okada S, Minamiyama Y, Hamazaki S, Toyokuni S, Sotomatsu A Glutathione cycle dependency of ferric nitrilotriacetate-induced lipid peroxidation in mouse proximal renal tubules. Arch Biochem Biophys 1993; 301: 138–42.Google Scholar
  39. 39.
    Toyokuni S, Sagripanti J-L. DNA single-and double-strand breaks produced by ferric nitrilotriacetate in relation to renal tubular carcinogenesis. Carcinogenesis 1993; 14: 223–7.Google Scholar
  40. 40.
    Hamazaki S, Okada S, Ebina Y, Li J-L, Midorikawa O. Effect of dietary vitamin E on ferric nitrilotriacetate-induced nephro-toxicity in rats. Toxicol Appl Pharmacol 1988; 92: 500–506.Google Scholar
  41. 41.
    Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 1994; 91: 2616–20.Google Scholar
  42. 42.
    Okada S, Fukunaga Y, Hamazaki S, Yamada Y, Toyokuni S. Sex differences in the localization and severity of ferric nitrilotriacetate-induced lipid peroxidation in the mouse kidney. Acta Pathol Jpn 1991; 41: 221–6.Google Scholar
  43. 43.
    Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats tretated with a renal carcinogen, ferric nitrilotriacetate. In: VIth International Conference on Superoxide and Superoxide Dismutase, Kyoto, 11–15 October 1993, Excerpta Medica International Congress Series 1058. Amsterdam: Elsevier, 1994; 171–172.Google Scholar
  44. 44.
    Uchida K, Fukuda A, Kawakishi S, Hiai H, Toyokuni S. Arenal carcinogen ferric nitrilotriacetate mediates a temporary accumulation of aldehyde-modified proteins within cytosolic compartment of rat kidney. Arch Biochem Biophys 1995; 317: 405–11.Google Scholar
  45. 45.
    Toyokuni S, Mori T, Dizdaroglu M. DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer 1994; 57: 123–8.Google Scholar
  46. 46.
    Toyokuni S, Mori T, Hiai H, Dizdaroglu M. Treatment of Wistar rats with a renal carcinogen, ferric nitrilotriacetate, causes DNA-protein cross-linking between thymine and tyrosine in their renal chromatin. Int J Cancer 1995; 62: 309–13.Google Scholar
  47. 47.
    Nishiyama Y, Suwa H, Okamoto K, Fukumoto M, Hiai H, Toyokuni S. Low incidence of point mutations in H-, K- and N-ras oncogenes and p53 tumor suppressor gene in renal cell.154 carcinoma and peritoneal mesothelioma of Wistar rats induced by ferric nitrilotriacetate. Jpn J Cancer Res 1995; 86: 1150–8.Google Scholar
  48. 48.
    Shields PG, Harris CC. Molecular epidemiology and the genetics of environmental cancer. J Am Med Assoc 1991; 266: 681–7.Google Scholar
  49. 49.
    Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD, Perantoni AO. GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Cancer Res 1992; 52: 4747–51.Google Scholar
  50. 50.
    McBride TJ, Preston BD, Loeb LA. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 1991; 30: 207–13.Google Scholar
  51. 51.
    Reid TM, Loeb LA. Tandem double CC to TT mutations are produced by reactive oxygen species. Proc Natl Acad Sci USA 1993; 90: 3904–7.Google Scholar
  52. 52.
    Nakatsuka S, Tanaka H, Namba M. Mutagenic effects of ferric nitrilotriacetate (Fe-NTA) on V79 Chinese hamster cells and its inhibitory effects on cell-cell communication. Carcinogenesis 1990; 11: 257–60.Google Scholar
  53. 53.
    Toyokuni S, Sagripanti J-L, Hitchins VM. Cytotoxic and mutagenic effects of ferric nitrilotriacetate on L5178Y mouse lymphoma cells. Cancer Lett 1995; 88: 157–62.Google Scholar
  54. 54.
    Dabbagh AJ, Mannion T, Lynch SM, Frei B. The effect of iron overload on rat plasma and liver oxidant status in vivo. Biochem J 1994; 300 (pt 3): 799–803.Google Scholar
  55. 55.
    Bonkovsky HL, Healey JF, Lincoln B, Bacon BR, Bishop DF, Elder GH. Hepatic heme synthesis in a new model of experimental hemochromatosis: studies in rats fed finely divided elemental iron. Hepatology 1987; 7: 1195–203.Google Scholar
  56. 56.
    Kawabata T, Ogino T, Awai M. Protective effects of glutathione against lipid peroxidation in chronically iron-loaded mice. Biochim Biophys Acta 1989; 1004: 89–94.Google Scholar
  57. 57.
    Fletcher LM, Roberts FD, Irving MG, Powell LW, Halliday JW. Effects of iron loading on free radical scavenging enzymes and lipid peroxidation in rat liver. Gastroenterology 1989; 97: 1011–1018.Google Scholar
  58. 58.
    Fukuda A, Osawa T, Oda H, Toyokuni S, Satoh K, Uchida K. Oxidative stress response in iron-induced carcinogenesis: Acute nephrotoxicity mediates the enhanced expression of glutathione s-transferase Yp isozyme. Arch Biochem Biophys 1996; 329: 39–46.Google Scholar
  59. 59.
    IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Man Nickel and nickel compounds. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Vol.11, Lyon, IARC), 1976; 75–112.Google Scholar
  60. 60.
    Chovil A, Sutherland RB, Halliday M. Respiratory cancer in a cohort of nickel sinter plant workers. Br J Ind Med 1981; 38: 327–33.Google Scholar
  61. 61.
    Gilman JPW. Metal carcinogenesis. II. A study on the carcinogenic activity of cobalt, copper, iron, and nickel compounds. Cancer Res 1962; 22: 158–62.Google Scholar
  62. 62.
    Sunderman FW, Jr, Maenza RM. Comparisons of carcino-genicities of nickel compounds in rats. Res Commun Chem Pathol Pharmacol 1976; 14: 319–30.Google Scholar
  63. 63.
    Sunderman FW, Jr. Recent advances in metal carcinogenesis. Ann Clin Lab Sci 1984; 14: 93–122.Google Scholar
  64. 64.
    Sunderman FW, Jr, Maenza RM, Hopfer SM, Mitchell JM, Allpass PR, Damjanov I. Induction of renal cancers in rats by intrarenal injection of nickel subsulfide. J Environ Pathol Toxicol 1979; 2: 1511–27.Google Scholar
  65. 65.
    Mori M, Hattori A, Sawaki M, Tsuzuki N, Sawada N, Oyamada M, Sugawara N, Enomoto A. The LEC rat: a model for human hepatitis, liver cancer, and much more. Am J Pathol 1994; 144: 200–4.Google Scholar
  66. 66.
    Wu J, Forbes JR, Chen HC, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet 1994; 7: 541–5.Google Scholar
  67. 67.
    Li Y, Togashi Y, Sato S, Emoto T, Kang J-H, Takeichi N, Kobayashi H, Kojima Y, Une Y, Uchino J. Abnormal copper accumulation in non-cancerous and cancerous liver tissue of LEC rats developing hereditary hepatitis and spontaneous hepatoma. Jpn J Cancer Res 1991; 82: 490–2.Google Scholar
  68. 68.
    Sugawara N, Sugawara C, Katakura M, Takahashi H, Mori M. Copper metabolism in the LEC rat: involvement of induction of metallothionein and deposition of zinc and iron. Experimentia 1991; 47: 1060–3.Google Scholar
  69. 69.
    Toyokuni S, Okada S, Hamazaki S, Fujioka M, Li J-L and Midorikawa O. Cirrhosis of the liver induced by cupric nitrilotriacetate in Wistar rats: an experimetnal model of copper toxicosis. Am J Pathol 1989; 134: 1263–74.Google Scholar
  70. 70.
    Hann H-WL, Stahlhut MW, Menduke H. Iron enhances tumor growth: observation on spontaneous mammary tumors in mice. Cancer 1991; 68: 2407–10.Google Scholar
  71. 71.
    Yoshiji H, Nakane D, Kinugasa T, Matsuzaki M, Denda A, Tsujii T, Konishi Y. Inhibitory effect of dietary iron deficiency on the induction of putative preneoplastic foci in rat liver with diethylnitrosamine promoted by phenobarbital. Br J Cancer 1992; 64: 839–42.Google Scholar
  72. 72.
    Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51: 794–8.Google Scholar
  73. 73.
    Okamoto K, Toyokuni S, Uchida K, Ogawa O, Takenewa J, Kakehi Y, Kinoshita H, Hattori Nakakuki Y, Hiai H, Yoshida O (1994). Formation of 8-hydroxy-2 0-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins in human renal-cell carcinoma. Int J Cancer 1994; 58: 825–9.Google Scholar
  74. 74.
    Toyokuni S, Okamoto K, Yodoi J, Hiai H. Hypothesis: Persistent oxidative stress in cancer. FEBS Letters 1995; 358: 1–3.Google Scholar
  75. 75.
    Batist G, Tulpule A, Sinha BK, Katki AG, Meyers CE, Cowan KH. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 1986; 261: 15544–9.Google Scholar
  76. 76.
    Nakagawa K, Saijo N, Tsuchida S, Sakai M, Tsunokawa Y, Yokata J, Muramatsu M, Terada M, Tew KD. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J Biol Chem 1990; 265: 4296–301.Google Scholar
  77. 77.
    Fujii S, Nanbu Y, Nonogaki H, Konishi I, Mori T, Masutani H, Yodoi J. Coexpression of adult T-cell leukemia-derived factor, a human thioredoxin homologue, and human papillomavirus DNA in neoplastic cervecal squamous epithelium. Cancer 1991; 68: 1583–91.Google Scholar
  78. 78.
    Nakamura H, Masutani H, Tagaya Y, Yamauchi A, Inamoto T, Nanbu Y, Fujii S, Ozawa K, Yodoi J. Expression and growth-promoting effect of adult T-cell leukemia-derived factor: a human thioredoxin homologue in hepatocellular carcinoma. Cancer 1992; 69: 2091–7.Google Scholar
  79. 79.
    Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, Maki H, Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem 1993; 268: 23524–30.Google Scholar
  80. 80.
    Okamoto K, Toyokuni S, Kim W-J, Ogawa O, Kakehi Y, Arao S, Hiai H, Yoshida O. Overexpression of human mutT homologue gene messenger RNA in renal cell carcnima: evidence of persistent oxidative stress in cancer. Int J Cancer 1996; 65: 437–41.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Shinya Toyokuni
    • 1
  1. 1.Department of Pathology and Biology of Diseases, Graduate School of MedicineKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations