Composition and accumulation of secondary carotenoids in Chlorococcum sp.

  • D. H. Zhang
  • Y. K. Ng
  • S. M. Phang


A locally isolated Chlorococcum sp. could accumulate astaxanthin and its esters as secondary carotenoids. The secondary carotenoids could reach a concentration of 5.2 mg g−1 d. wt, and were located in the cytoplasm and chloroplast as globules. Cells grew best at pH 8.0 and 30 °C, at which the growth rate was about 0.066 h−1. Acidic condition (pH 5.5 and 6.5) and slightly elevated temperature (35 °C) enhanced the cellular accumulation of astaxanthin. Outdoor studies indicated that Chlorococcum sp. grew well in a tubular photobioreactor. In medium containing 2 mM and 10 mM NH4CI, the cellular contents of total secondary carotenoids and astaxanthin reached similar levels (5.0 mg g−1 d. wt and 2.0 mg g−1 d. wt, respectively) in the 15 days of cultivation, while the yield of total secondary carotenoids and astaxanthin in 10 mM NH4CI were higher (45 mg L−1 and 18 mg L−1, respectively). The advantages of tolerance to high temperature and extreme pH values, relative fast growth rate and ease of cultivation in outdoor system suggest that Chlorococcum sp. could be a potential candidate for mass production of secondary carotenoids in particular astaxanthin.


Carotenoid Chlorella Astaxanthin Canthaxanthin Photosynthetically Available Radiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. envir. Microbiol. 55: 116–124.Google Scholar
  2. Andrewes A G, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma, a red pigmented fermenting yeast. Phytochemistry 15: 1003–1007.CrossRefGoogle Scholar
  3. Bauernfeind JC (1981) Carotenoids as colorant and vitamin A precursor. Academic Press, New York, 938 pp.Google Scholar
  4. Borowitzka MA, Huisman JM, Ann O (1991) Cultures of the astaxanthin producing green alga Haematococcus pluvialis. 1. Effect of nutrients on growth and cell type. J. appl. Phycol. 3: 295–304.Google Scholar
  5. Boussiba S, Lu F, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol. 213: 386–391.Google Scholar
  6. Brown TE, Richardson FL, Vaughn ML (1967) Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6: 167–184.Google Scholar
  7. Chaumont D, Thepenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during sunlight cycle. J. appl. Phycol. 7: 529–537.CrossRefGoogle Scholar
  8. Compell SA (1969) Carotenoid metabolism in the commensal crab Pinnotheres pisum. Comp. Biochem. Physiol. 30: 803–812.CrossRefGoogle Scholar
  9. Czeczuga B (1974) Carotenoids in Euglena rubida Maix. Comp. Biochem. Physiol. 48B: 349–354.Google Scholar
  10. Czeczuga B (1986) Characteristic carotenoids in some phytobenthos species in the coastal area of the Adriatic Sea. Acta Soc. Bot. Pol. 55: 601–609.Google Scholar
  11. Davis BH (1976) Carotenoids. In Goodwin TW (ed.), Chemistry and Biochemistry of Plant Pigments, 2. Academic Press, London: 38–165.Google Scholar
  12. Ding SY, Lee YK(1994) Growth of entrapped Haematococcus lacustris in alginate beads in a fluidized bed air-lift bioreactor, In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in Asia-Pacific Region. University of Malaya, Kuala Lumpur: 130–134.Google Scholar
  13. Droop MR (1955) Carotenoids in Haematococcus pluvialis. Nature 175: 42.Google Scholar
  14. Grung M, D'Souza FML, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3′S)-astaxanthin esters. J. appl. Phycol. 4: 165–171.CrossRefGoogle Scholar
  15. Harker M, Tsavalos AJ, Young AJ (1996) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 litre air-lift photobioreactor. J. Ferment. Bioengng 82: 113–118.CrossRefGoogle Scholar
  16. Herring PJ (1968) The carotenoid pigrnents of Daphnia magna Straus-I. The pigments of animals fed Chlorella pyrenoidosa and pure carotenoids. Comp. Biochem. Physiol. 24: 1887–203.Google Scholar
  17. Hertzberg S, Liaaen-Jensen S (1966) The carotenoids of bluegreen algae-I. The carotenoids of Oscillatoria rubescens and an Arthrospira sp. Phytochemistry 5: 557–563.CrossRefGoogle Scholar
  18. Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11: 297–326.Google Scholar
  19. Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in salmonoids diets. Aquaculture 20: 123–134.CrossRefGoogle Scholar
  20. Jyonouchi H, Zhang L, Tomita Y (1993) Studies of immunomodulating actions of carotenoids II astaxanthin enhances in vitro antibody production to T-dependent antigens without facilating polycloned B-Cell activation. Nutr. Cancer 19:269–280.PubMedCrossRefGoogle Scholar
  21. Kessler E, Czygen F (1965) Chlorella zofingiensis Donz: Isolierung neuer Stamme und ihre physiologisch-biochemischen Eigenschaften. Ber. tanischen Gesell. 78: 342–347.Google Scholar
  22. Krinsky NI, Goldsmith TH (1960) The carotenoids of flagellated alga, Euglena gracilis. Arch. Biochem. Biophys. 91: 271–279.PubMedCrossRefGoogle Scholar
  23. Lee WL (1966) Pigmentation of themarine isopod Idothea granulosa (Rathke). Comp. Biochem. Physiol. 19: 13–27.CrossRefGoogle Scholar
  24. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 30: 955–1000.Google Scholar
  25. Lee YK, Pirt SJ (1981) Energetics of photosynthetic algal growth: influence of intermittent illumination in short (40s) cycle. J. gen. Microbiol. 124: 433–52.Google Scholar
  26. Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 27: 575–577.CrossRefGoogle Scholar
  27. Lu F, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30: 829–833.CrossRefGoogle Scholar
  28. Lu F, Vonshak A, Gabbay R, Hirshberg J, Cohen Z, Boussiba S (1995) The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine. Pl. Cell Physiol. 36: 1519–1524.Google Scholar
  29. Meyer PS, du Preez JC, Kilian SG(1994) Selection and evaluation of astaxanthinoverproducing mutants of Phaffia rhodozyma. World J. Microbiol. Biotechnol. 9: 5 14–520.Google Scholar
  30. Miki W (1991) Biological function and activity of animal carotenoids. Pure appl. Chem. 63: 141–146.Google Scholar
  31. Rentrom B, Borch G, Skulberg OM, Liaan-Jensen S (1981) Natural occurrence of enantiomeric and meso-astaxanthin 3: Optical purity of (3S, 3′S)-astaxanthin in Haematococcus pluvialis (Green Algae). Phytochemistry 20: 2561–2564.CrossRefGoogle Scholar
  32. Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad S (1994) accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol. 44: 287–292.Google Scholar
  33. Santos MF, Mesquita JF (1984) Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis. Cytologia 49: 215–228.Google Scholar
  34. Schiedt K, Bischof S, Glinz E (1993) Metabolism of carotenoids and in vivo racemization of (3S, 3′S)-astaxanthin in crustacean Penaeus. Methods Enzymol. 214: 148–168.CrossRefGoogle Scholar
  35. Sprey B (1970) Die Lokalisierung von sekundar Carotinoiden von Haematococcus pluvialis. Protoplasma 71: 235–250.PubMedCrossRefGoogle Scholar
  36. Vechtel B, Kahmann U, Ruppel HG (1992b) Secondary carotenoids of Eremosphaera viridis De Bary (Chlorophyteae) under N deficiency. Bot. Acta 105: 219–222.Google Scholar
  37. Vechtel B, Pistorious EK, Ruppel HG (1992a) Occurrence of secondary carotenoids in PSI complexes isolated from Eremosphaera viridis De Berry (Chlorophyceae). Z. Naturforsch. 47C: 51–56.Google Scholar
  38. Weedon BCL (1971) Occurrence. In Isler O (ed.) Carotenoids. Birkhauser Verlag, Basel 9–59.Google Scholar
  39. Weidinger M, Ruppel HG (1985) Ca2+-requirement for a blue light-induced chloroplast translocation in Eremospaera viridis. Protoplasma 124: 184–187.CrossRefGoogle Scholar
  40. Yokoyama A, Miki W (1995) Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol. Lett. 128: 139–144.CrossRefGoogle Scholar
  41. Yong YYR, Lee YK (1991) Do carotenoids play photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta). J. Phycol. 30: 257–261.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D. H. Zhang
    • 1
  • Y. K. Ng
    • 1
  • S. M. Phang
    • 2
  1. 1.Department of Microbiology, Faculty of MedicineNational University of SingaporeSingapore
  2. 2.Institute of Advanced StudiesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations