Advertisement

Microalgae for aquaculture: Opportunities and constraints

  • Michael A. Borowitzka
Article
aquaculture pastes Isochrysis Tetraselmis Chaetoceros Thalassiosira Nannochloropsis Pavlova Skeletonema culture systems 

References

  1. Abbott IA (1996) Ethnobotany of seaweeds: clues to uses of seaweeds. Hydrobiologia 326/327: 15–20.CrossRefGoogle Scholar
  2. AQUACOP (1977) Elevage larvaire de peneides en milieu tropical. Act. colloq. CNEXO 4: 179–191.Google Scholar
  3. Austin B, Baudet E, Stobie M (1992) Inhibition of bacterial fish pathogens by Tetraselmis suecica. J. Fish. Dis. 15: 55–61.CrossRefGoogle Scholar
  4. Austin B, Day JG (1990) Inhibition of prawn pathogenic Vibriospp. by a commercial spray dried preparation of Tetraselmis suecica. Aquaculture 90: 389–392.CrossRefGoogle Scholar
  5. Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. appl. Phycol. 6: 123–129.CrossRefGoogle Scholar
  6. Beidenbach JM, Smith L, Lawrence AL (1990) Use of a new spraydried algal product in paneid larviculture. Aquaculture 86: 249–257.CrossRefGoogle Scholar
  7. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1994) Production of high quality Spirulinaat Earthrise Farms. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur: 92–102.Google Scholar
  8. Ben-Amotz A, Avron M (1989) The biotechnology of mass culturing Dunaliellafor products of commercial interest. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, Harlow: 91–114.Google Scholar
  9. Bixler HJ (1996) Recent developments in manufacturing and marketing carrageenan. Hydrobiologia 326/327: 35–57.CrossRefGoogle Scholar
  10. Borowitzka MA (1992a) Algal biotechnology products and processes: Matching science and economics. J. appl. Phycol. 4: 267–279.CrossRefGoogle Scholar
  11. Borowitzka MA (1992b) Comparing carotenogenesis in Dunaliella and Haematococcus: Implications for commercial production strategies. In Villa TG, Abalde J (eds), Profiles on Biotechnology. Universidade de Santiago de Compostela, Santiago de Compostela: 301–310.Google Scholar
  12. Borowitzka MA (1994) Products from algae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur: 5–15.Google Scholar
  13. Borowitzka MA (1996) Closed algal photobioreactors: design considerations for large-scale systems. J. mar. biotechnol. 4: 185–191.Google Scholar
  14. Brown A (1972) Experimental techniques for preserving diatoms used as food for larval Panaeus aztecus. Proc. Nat. Shellfisheries Ass. 62: 21–25.Google Scholar
  15. Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. exp. mar. Biol. Ecol. 145: 79–99.CrossRefGoogle Scholar
  16. Brown MR (1995) Effects of storage and processing on the ascorbic acid content of concentrates prepared from Chaetoceros calcitrans. J. appl. Phycol. 7: 495–500.CrossRefGoogle Scholar
  17. Brown MR, Farmer CL (1994) Riboflavin content of 6 species of microalgae used in mariculture. J. appl. Phycol. 6: 61–65.CrossRefGoogle Scholar
  18. Brown MR, Garland CD, Jeffrey SW, Jameson ID, Leroi JM (1993) The gross and amino acid compositions of batch and semicontinuous cultures of Isochrysissp. (clone T.ISO), Pavlova lutheriand Nannochloropsis oculata. J. appl. Phycol. 5: 285–296.CrossRefGoogle Scholar
  19. Brown MR, Jeffrey SW (1992) Biochemical composition of microalgae from the green algal Classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. exp. mar. Biol. Ecol. 161: 91–113.CrossRefGoogle Scholar
  20. Brown MR, Jeffrey SW, Garland CD (1989) Nutritional aspects of microalgae used in mariculture; a literature review. CSIRO Marine Laboratories Report 205: 1–43.Google Scholar
  21. Brown MR, Miller KA (1992) The ascorbic acid content of 11 species of microalgae used in mariculture. J. appl. Phycol. 4: 205–215.CrossRefGoogle Scholar
  22. Cahu C, Guillaume JC, Stephan G, Chim L (1994) Influence of phospholid and highly unsaturated fatty acids on spawning rate and egg and tissue composition in Penaeus vannameifed semi-purified diets. Aquaculture 126: 159–170.CrossRefGoogle Scholar
  23. Canzonier WJ, Brunetti R (1976) Low-cost continuous algal culture system. In Persoone G, Jaspers E (eds), Proc. 10th European Symposium Marine Biology. Universa Press, Wetteren: 27–31.Google Scholar
  24. Chaumont D (1993) Biotechnology of algal biomass production–A review of systems for outdoor mass culture. J. appl. Phycol. 5: 593–604.CrossRefGoogle Scholar
  25. Chaumont D, Thepenier C, Gudin C, Junjas C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentumfrom laboratory to pilot plant (1981–1987). In Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London: 199–208.Google Scholar
  26. Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis–Assay on Rainbow Trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112: 217–226.CrossRefGoogle Scholar
  27. Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutumgrown in a tubular photobioreactor. J. appl. Phycol. 6: 67–74.CrossRefGoogle Scholar
  28. Costa-Pierce BA (1982) Construction and use of free-standing solar silos as combined mass algal/fish culture units. Aquaculture Engng. 1: 239–244.CrossRefGoogle Scholar
  29. Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery of bivalve molluscs: an international survey. J. Shellfish. Res. 11: 467–476.Google Scholar
  30. Curatolo A, Ryan MJ, Mercer JP (1993) An Evaluation of the performance of Manila Clam spat (Tapes philippinarum) fed on different rations of spray-dried algae (Tetraselmis suecica). Aquaculture 112: 179–186.CrossRefGoogle Scholar
  31. Dall W (1995) Carotenoids versus retinoids (vitamin a) as essential growth factors in penaeid prawns (Penaeus semisulcatus). Mar. Biol. 124: 209–213.CrossRefGoogle Scholar
  32. Day JG, Tsavalos AJ (1996) An investigation of the heterotrophic culture of the green alga Tetraselmis. J. appl. Phycol. 8: 73–77.CrossRefGoogle Scholar
  33. De Pauw N, Persoone G (1988) Micro-algae for aquaculture. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge: 197–221.Google Scholar
  34. De Roeck-Holtzhauer Y, Claire C, Bresdin F, Amicel L, Derrien A (1993) Vitamin, free amino acid and fatty acid compositions of some marine planktonic microalgae used in aquaculture. Bot. mar. 36: 321–325.CrossRefGoogle Scholar
  35. Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal Classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. exp. mar. Biol. Ecol. 161: 115–134.CrossRefGoogle Scholar
  36. Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. appl. Phycol. 5: 71–83.CrossRefGoogle Scholar
  37. Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155–161.CrossRefGoogle Scholar
  38. Ebert EE, Houk JL (1984) Elements and innovations in the cultivation of red abalone Haliotis rufescens. Aquaculture 39: 375–392.CrossRefGoogle Scholar
  39. Epifanio CE (1979) Growth in bivalve molluscs: nutritional effect of two or more species of algae in diets fed to the American oyster Crassostrea virginicaand the hard clam Mercenaria mercenaria. Aquaculture 18: 1–12.CrossRefGoogle Scholar
  40. Fábregas J, Herrereo C, Cabezas B, Abalde J (1986) Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbanaParke at varying nutrient compositions. Aquaculture 53: 101–113.CrossRefGoogle Scholar
  41. Fox JM (1983) Intensive algal culture techniques. In McVey JP (ed.), CRC Handbook of Mariculture. Crustacean Aquaculture. CRC Press, Inc., Boca Raton, Florida: 15–41.Google Scholar
  42. Fulks W, Main KL (1991) The design and operation of commercial-scale live feeds production systems. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems. The Oceanic Institute, Honolulu: 3–52.Google Scholar
  43. Gallardo PP, Alfonso E, Gaxiola G, Soto LA, Rosas C (1995) Feeding schedule for Penaeus setiferuslarvae on diatoms (Chaetoceros ceratosporum), flagellates (Tetraselmis chuii) and Artemia nauplii. Aquaculture 131: 239–252.CrossRefGoogle Scholar
  44. Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J. appl. Phycol. 6: 131–141.CrossRefGoogle Scholar
  45. Griffith GW, Murphy Kenslow MA, Ross LA (1973) A mass culture method for Tetraselmissp.–A promising food for larval crustaceans. Proc. Ann. Meet. World Maricult. Soc. 4: 289–294.Google Scholar
  46. He HQ, Lawrence AL (1993) Vitamin-E requirement of Penaeus vannamei. Aquaculture 118: 245–255.CrossRefGoogle Scholar
  47. Hellebust JA, Lewin J (1977) Heterotrophic nutrition. In Werner D (ed.), The Biology of Diatoms. Blackwell Scientific Publications, Oxford: 169–197.Google Scholar
  48. Heras H, Keanhowie J, Ackman RG (1994) The potential use of lipid microspheres as nutritional supplements for adult Ostrea edulis. Aquaculture 123: 309–322.CrossRefGoogle Scholar
  49. Hidu H, Ukeles R (1962) Dried unicellular algae as food for the larvae of the hard shell clam, Mercenaria mercenaria. Proceedings, National Shellfish Association 53: 85–101.Google Scholar
  50. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor of outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengng 51: 51–60.CrossRefGoogle Scholar
  51. Johnson EA, Schroeder W (1995) Astaxanthin from the yeast Phaffia rhodozyma. Studies in Mycology: 81–90.Google Scholar
  52. Jones DA, Kurmaly K, Arshard A (1987) Paneid shrimp hatchery trials using microencapsulated diets. Aquaculture 64: 133–164.CrossRefGoogle Scholar
  53. Kanazawa A, Koshio S (1994) Lipid nutrition of the spiny lobster Panulirus japonicus(Decapoda, Lalinuridae)–A review. Crustaceana 67: 226–232.CrossRefGoogle Scholar
  54. Knauer J, Britz PJ, Hecth T (1996) Comparative growth performance and digestive enzyme activity of juvenile South African abalone, Haliotis midae, fed on diatoms and a practical diet. Aquaculture 140: 75–85.CrossRefGoogle Scholar
  55. Koven WM, Tandler A, Kissil GW, Sklan D (1992) The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurataand their effect on survival, lipid composition and size distribution. Aquaculture 104: 91–104.CrossRefGoogle Scholar
  56. Laing I, Millican PF (1992) Indoor nursery cultivation of juvenile bivalve molluscs using diets of dried algae. Aquaculture 102: 231–243.CrossRefGoogle Scholar
  57. Laing I, Verdugo CG (1991) Nutritional value of spraydried Tetraselmis suecicafor juvenile bivalves. Aquaculture 92: 207–218.CrossRefGoogle Scholar
  58. Laing I, Child AR, Janke A (1990) Nutritional value of dried algae diets for larvae of Manila Clam (Tapes philippinarum). J. mar. biol. Ass. U.K. 70: 1–12.Google Scholar
  59. Lee CS, Tamaru CS (1993) Live larval food production at the Oceanic Institute, Hawaii. In McVey JP (ed.), CRC Handbook of Mariculture. Crustacean Aquaculture. CRC Press, Boca Raton: 15–28.Google Scholar
  60. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Biotechnol. Bioengng 38: 995–1000.CrossRefGoogle Scholar
  61. Liao IC, Su HM, Lin JH (1993) Larval foods for peneid prawns. In McVey JP (ed.), CRC Handbook of Mariculture. CRC Press, Boca Raton: 29–59.Google Scholar
  62. Liao WL, Nureborhan SA, Okada S, Matsui T, Yamaguchi K (1993) Pigmentation of cultured black tiger prawn by feeding with a Spirulina-supplemented diet. Bull. Jap. Soc. Sci. Fish. 59: 165–169.Google Scholar
  63. Ling BH, Leung PS, Shang YC (1997) Overview of world shrimp industry. Aquaculture Asia 2(3): 28–31.Google Scholar
  64. Mezriui N, Oudra B, Oufdou K, Hassani L, Loudiki M, Darley J (1994) Effect of microalgae growing on wastewater batch culture on Escherichia coliand Vibrio choleraesurvival. Wat Sci. Technol. 30: 295–302.Google Scholar
  65. Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and preservation for use in culture and as larval food. Aquaculture Engng. 9: 295–304.CrossRefGoogle Scholar
  66. Millican PF, Helm MM (1994) Effects of nutrition on larvae production in the European Flat Oyster, Ostrea edulis. Aquaculture 123: 83–94.CrossRefGoogle Scholar
  67. Mock CR (1972) Larval culture of penaeid shrimp at the Galveston Biological Laboratory. NOAA Technical Report NMFS CIRC388: 33–40.Google Scholar
  68. Mock CR, Murphy MA (1970) Techniques for raising penaeid shrimp from the egg to post-larvae. Proceedings First Annual Workshop, World Mariculture Society 1: 143–158.Google Scholar
  69. Mohn FH (1988) Harvesting of micro-algal biomass. In Borowitzka MA, Borowitzka LJ (eds), Micro-Algal Biotechnology. Cambridge U.P., Cambridge: 395–414.Google Scholar
  70. Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Fernandez Sevilla JM, Acien Fernandez FG (1996) Productivity analysis of outdoor chemostat cultures in tubular air-lift photobioreactors. J. appl. Phycol. 8: 369–380.CrossRefGoogle Scholar
  71. Montaini E, Zittelli GC, Tredici MR, Grima EM, Sevilla JMF, Perez JAS (1995) Long-term preservation of Tetraselmis suecica–influence of storage on viability and fatty acid profile. Aquaculture 134: 81–90.CrossRefGoogle Scholar
  72. Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13: 227–264.Google Scholar
  73. Nell JA (1993) The development of oyster diets. Aust. J. agric. Res. 44: 557–566.CrossRefGoogle Scholar
  74. Nell JA, O’Connor WA (1991) The evaluation of fresh algae and stored algal concentrates as a food source for Sydney Rock Oyster, Saccostrea commercialis(Iredale and Roughley), larvae. Aquaculture 99: 277–284.CrossRefGoogle Scholar
  75. Nell JA, Diemar JA, Heasman MP (1996) Food value of live yeasts and dry yeast-based diets fed to Sydney Rock Oyster Saccostrea commercialisspat. Aquaculture 145: 235–243.CrossRefGoogle Scholar
  76. New MB (1990) Freshwater prawn culture–A review. Aquaculture 88: 99–143.CrossRefGoogle Scholar
  77. Numaguchi K, Nell JA (1991) Effects of gelatin acacia microcapsule and algal meal supplementation of algal diets on growth rates of Sydney Rock Oyster, Saccostrea commercialis(Iredale and Roughley), larvae. Aquaculture 94: 65–78.CrossRefGoogle Scholar
  78. O’Connor WA, Nell JA (1992) The potential of algal concentrates for the production of Australian bivalves. In Allan GL, Dall W (eds), Proceedings, Aquaculture Nutrition Workshop, Salamander Bay, April 1991. NSW Fisheries, Brackish Water Fish Culture Research Station, Salamander Bay, NSW: 200–201.Google Scholar
  79. O’Meley C, Daintith M (1993) Algal Cultures for Marine Hatcheries. Aquaculture Sourcebooks, Launceston: 35.Google Scholar
  80. Pulz O (1994) Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur: 113–117.Google Scholar
  81. Pulz O, Gerbsch N, Buchholz R (1995) Light energy supply in platetype and light diffusing optical fiber bioreactors. J. appl. Phycol. 7: 145–149.CrossRefGoogle Scholar
  82. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture. 2. Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J. appl. Phycol. 6: 347–356.CrossRefGoogle Scholar
  83. Renaud SM, Parry DL, Thinh LV, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysissp. and Nannochloropsis oculatafor use in tropical aquaculture. J. appl. Phycol. 3: 43–53.CrossRefGoogle Scholar
  84. Renaud SM, Parry DL, Thinh LV (1994) Microalgae for use in tropical aquaculture 1. Gross chemical and fatty acid composition of 12 species of microalgae from the Northern-Territory, Australia. J. appl. Phycol. 6: 337–345.CrossRefGoogle Scholar
  85. Robinson LF, Morrison AW, Bamforth MR (1988) Improvements relating to biosynthesis. European Patent Number 261872.Google Scholar
  86. Sato V (1991) The developmento of a phytoplankton production system as a support base for finfish larval rearing research. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems. The Oceanic Institute, Hololulu: 257–273.Google Scholar
  87. Shamsudin L (1992) Lipid and fatty acid composition of microalgae used in Malaysian aquaculture as live food for the early stage of penaeid larvae. J. appl. Phycol. 4: 371–378.CrossRefGoogle Scholar
  88. Sommer TR, Morrissey NM, Potts WT (1991a) Growth and pigmentation of Marron (Cherax tenuimanus) fed a reference ration supplemented with the microalga Dunaliella salina. Aquaculture 99: 285–295.CrossRefGoogle Scholar
  89. Sommer TR, Potts WT, Morrissy NM (1991b) Utilization ofmicroalgal astaxanthin by Rainbow Trout (Oncorhynchus mykiss). Aquaculture 94: 79–88.CrossRefGoogle Scholar
  90. Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J. appl. Phycol. 8: 59–64.CrossRefGoogle Scholar
  91. Tanticharoen M, Bunnag B, Vonshak A (1993) Cultivation of Spirulina using secondary treated starch wastewater. Australas. Biotechnol. 3: 223–226.Google Scholar
  92. Thompson PA, Guo MX, Harrison PJ (1992a) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28: 481–488.CrossRefGoogle Scholar
  93. Thompson PA, Guo MX, Harrison PJ, Whyte JNC (1992b) Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28: 488–497.CrossRefGoogle Scholar
  94. Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels–The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221–231.CrossRefGoogle Scholar
  95. Uki N, Kikuchi S (1979) Food value of six benthic micro-algae on growth of juvenile abalone, Haliotis discus hannai. Bull. Tohoku Reg. Fish. Res. Lab. 40: 47–52.Google Scholar
  96. Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae–The Indian experience. Department of Science & Technology, New Delhi: 257.Google Scholar
  97. Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the Class Eustigmatophyceae. J. Phycol. 29: 69–78.CrossRefGoogle Scholar
  98. Volkman JK, Dunstan GA, Jeffrey SW, Kearney PS (1991) Fatty acids from microalgae of the genus Pavlova. Phytochemistry 30: 1855–1859.CrossRefGoogle Scholar
  99. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. exp. mar. Biol. Ecol. 128: 219–240.CrossRefGoogle Scholar
  100. Volkman JK, Smith DJ, Eglinton G, Forsberg TEV, Corner EDS (1981) Sterol and fatty acid composition of four marine haptophycean algae. J. mar. biol. Ass., U.K. 61: 509–527.CrossRefGoogle Scholar
  101. Watanabe Y, Hall DO (1996) Photosynthetic production of the filamentous cyanobacterium Spirulina platensisin a cone shaped helical tubular photobioreactor. Appl. Microbiol. Biotech. 44: 693–698.Google Scholar
  102. Watson RH, Jones GG, Jones BL (1986) Using centrifuged algae for feeding oyster larvae. J. Shellfish. Res. 5: 136.Google Scholar
  103. Wikfors GH, Patterson GW, Lewin RA (1995) High-lipid Tetraselmiscultures support rapid growth of post-set oysters and scallops. J. Shellfish. Res. 14: 282.Google Scholar
  104. Wikfors GH, Patterson GW, Ghosh P, Lewin RA, Smith BC, Alix JH (1996) Growth of post-set oysters, Crassostrea virginica, on highlipid strains of algal flagellates Tetraselmisspp. Aquaculture 143: 411–419.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Michael A. Borowitzka
    • 1
  1. 1.Algae Research Laboratory, School of Biological SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations