Journal of Paleolimnology

, Volume 17, Issue 1, pp 85–100 | Cite as

Holocene climate reconstructions from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, U.S.A.

  • J. Xia
  • B. J. Haskell
  • D. R. Engstrom
  • E. Ito


The geochemistry of ostracode shells and bulk carbonates in a 19-meter sediment core documents at century-scale resolution the evolution of water chemistry in Coldwater Lake, North Dakota, providing a continuous paleohydrologic record of Holocene climate change in the northern Great Plains. A combination of δ18O, δ13C, Mg/Ca and Sr/Ca in ostracode calcite aided by Sr/Ca in bulk carbonates are used to constrain the paleoclimatic reconstructions. A fresh-water phase in the early Holocene, indicated by the absence of Candona rawsoni and low concentrations of Sr/Ca in bulk carbonate, was followed by a sharp increase in salinity between 10 800 and 8900 yr B.P. The climate was predominately dry during the late part of the early Holocene and most of the middle Holocene (8900–5000 yr B.P.), when the lake was very sensitive and recorded a series of dry and wet oscillations. Maximum salinity occurred around 5500 yr B.P. and was followed by a gradual decrease between 5000 and 2400 yr B.P. From 2400 yr B.P. the δ18O, Mg/Ca, and Sr/Ca in the ostracodes indicate generally wet conditions interrupted by a series of lesser salinity and temperature oscillations lasting until 600 yr B.P. Ostracode geochemistry indicates that a warm and dry climate returned at about the time of the Little Ice Age (600–150 yr B.P.). Ostracode δ13C shows a ong-term increasing trend during the Holocene, which suggests that lake productivity and atmospheric CO2 exchange made greater contributions to the hypolimnetic carbon pool as the lake became shallower with time.


Calcite Holocene Ostracode Temperature Oscillation Holocene Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnosky, C.W., E. C. Grimm & H. E. Wright, Jr., 1987. Towards a postglacial history of the northern Great Plains: A review of the paleoecologic problems. Annals Carnegie Mus. 56: 259–73.Google Scholar
  2. Bartlein, P. C., T. Webb, III & E. Fleri, 1984. Holocene climate change in the northern Midwest: pollen derived estimates. Quat. Res. 22: 361–374.Google Scholar
  3. Bowler, J. M. & J. T. Teller, 1986. Quaternary evaporites and hydrological changes, Lake Tyrrell, north-west Victoria. Aust. J. Earth Sci. 33: 43–63.Google Scholar
  4. Bryson, R. A., 1966. Air masses, streamlines, and the boreal forest. Geogr. Bull. 8: 228–269.Google Scholar
  5. Bryson, R. A., D. A. Baerreis & W. M. Wendland, 1970. The character of late-glacial and postglacial climatic changes. In W. Dort, Jr & J. Knox Jones, Jr. (eds), Pleistocene and recent environments of the central Great Plains. The University Press of Kansas, Special Publication 3, Lawrence: 53–74.Google Scholar
  6. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1983. Magnesium, strontium, and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions–a preliminary study. In R. F. Maddocks (ed.), Applications of Ostracoda. University of Houston, Geosciences Department, Houston: 238–249.Google Scholar
  7. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1985. Strontium content of Ostracods indicates lacustrine palaeosalinity. Nature 316: 251–253.Google Scholar
  8. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1986a. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143: 135–142.Google Scholar
  9. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1986b. Magnesium content of nonmarine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeogr., Palaeoclimatol., Palaeoecol. 54: 43–61.Google Scholar
  10. Chivas, A. R., P. De Deckker, J. A. Cali, A. Chapman, E. Kiss & J. M. G. Shelley, 1993. Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators. In P. K. Swart, K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, DC: 113–122.Google Scholar
  11. Clayton, L., 1962. Glacial geology of Logan and McIntosh Counties, North Dakota. N. Dakota Geol. Surv. Bull. 37: 1–84.Google Scholar
  12. Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.Google Scholar
  13. Curtis, J. H. & D. A. Hodell, 1993. An isotopic and trace element study of ostracods from lake Miragoane, Haiti: A 10 500 year record of paleosalinity and paleotemperature changes in the Caribbean. In P. K. Swart, K. C. Lohmann, J. McKenzie S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, DC: 135–152.Google Scholar
  14. De Deckker, P. & R. M. Forester, 1988. The use of ostracods to reconstruct continental palaeoenvironmental records. In P. De Deckker, J.-P. Colin & J.-P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam: 175–198.Google Scholar
  15. De Deckker, P., A. R. Chivas, J. M. G. Shelley & T. Torgersen, 1988. Ostracod shell chemistry: a new palaeoenvironmental indicator applied to a regressive/transgressive record from the Gulf of Carpentaria, Australia. Palaeogeogr., Palaeoclimatol., Palaeoecol. 66: 231–241.Google Scholar
  16. Delorme, L. D., 1970. Freshwater ostracodes of Canada, part III, family Candonidae. Can. J. of Zool. 48: 1099–1127.Google Scholar
  17. Engstrom D. R. & S. R. Nelson, 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA. Palaeogeogr., Palaeoclimatol., Palaeoecol. 83: 295–312.Google Scholar
  18. Forester, R. M., 1987. Late Quaternary paleoclimate records from lacustrine ostracodes. In W. F. Ruddiman & H. E. Wright Jr. (eds), North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America, v. K-3. Geological Society of America, Boulder, Colorado: 261–276.Google Scholar
  19. Fritz, S. C., D. R. Engstrom & B. J. Haskell, 1994.'Little Ice Age' aridity in the North American Great Plains: a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA. The Holocene 4: 69–73.Google Scholar
  20. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  21. Hardie, L. A., J. P. Smoot & H. P. Eugster, 1978. Saline lakes and their deposits: a sedimentological approach. Spec. Publs. Int. Assoc. Sedimentol. 2: 7–41.Google Scholar
  22. Haskell, B. J., D. R. Engstrom & S. C. Fritz, 1996. Late Quaternary paleohydrology in the North American Great Plains inferred from the geochemistry of endogenic carbonate and fossil ostracodes from Devils Lake, North Dakota, USA. Palaeogeogr., Palaeoclimatol., Palaeoecol. (in press).Google Scholar
  23. Herczeg, A. L. & R. G. Fairbanks, 1987. Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochim. Cosmochim. Acta 51: 895–899.Google Scholar
  24. Hostetler, S. W. & L. V. Benson, 1994. Stable isotopes of oxygen and hydrogen in the Truckee River-Pyramid Lake surface-water system. 2. A predictive model of δ18O and δ2H in Pyramid Lake. Limnol. Oceanogr. 39: 356–364.Google Scholar
  25. Juggins, S., R. W. Battarbee & S. C. Fritz, 1994. Diatom/water chemistry transfer functions for salinity, water-level and climate reconstruction. unpublished report, NERC palaeoclimate special topic award GST/02/494.Google Scholar
  26. Kelts, K., 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction. In A. J. Fleet, K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geol. Soc. Am. Spec. Publ. 40: 3–26.Google Scholar
  27. Kennedy, K. A., 1994. Early-Holocene geochemical evolution of saline Medicine Lake, South Dakota. J. Paleolimnology 10: 69–84.Google Scholar
  28. Laird, K. R., S. C. Fritz, E. C. Grimm & P. G. Mueller, 1996. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnol. Oceanogr. (in press).Google Scholar
  29. Last, W. M., 1990. Paleochemistry and paleohydrology of Ceylon Lake, a salt-dominated playa basin in the northern Great Plains, Canada. J. Paleolimnology 4: 219–238.Google Scholar
  30. Last, W. M. & D. J. Sauchyn, 1993. Mineralogy and lithostratigraphy of Harris Lake, southwestern Saskatchewan, Canada. J. Paleolimnology 9: 23–39.Google Scholar
  31. Last, W. M. & T. H. Schweyen, 1985. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. Quat. Res. 24: 219–234.Google Scholar
  32. Last, W. M. & L. A. Slezak, 1986. Paleohydrology, sedimentology, and geochemistry of two meromictic saline lakes in southern Saskatchewan. Géogr. Phys. Quat. 60: 5–15.Google Scholar
  33. Lister, G. S., 1988. Stable isotopes from lacustrine ostracoda as tracers for continental palaeoenvironments. In P. De Deckker, J. P. Colin & J. P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam: 201–218.Google Scholar
  34. Lister, G. S., K. Kelts, K. Z. Chen, Jun-Qing Yu & F. Niessen, 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr., Palaeoclimatol., Palaeoecol. 84: 141–162.Google Scholar
  35. McCrea, J. M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Physics 18: 849–857.Google Scholar
  36. McKenzie, J. A., 1985, Carbon isotopes and productivity in the lacustrine and marine environment. In W. Stumm (ed.), Chemical Processes in Lakes. Wiley, New York: 99–118.Google Scholar
  37. Müller, G., G. Irion & U. Föorstner, 1972. Formation and diagenesis of inorganic CaMg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.Google Scholar
  38. Palacios-Fest, M. R., A. S. Cohen, J. Ruiz & B. Blank, 1993. Comparative paleoclimatic interpretations from nonmarine ostracodes using faunal assemblages, trace-element shell chemistry and stable isotope data. In P. K. Swart, K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, DC: 179–190.Google Scholar
  39. Radle, N., C. M. Keister & R. W. Battarbee, 1989. Diatom, pollen, and geochemical evidence for the palaeosalinity of Medicine Lake, S. Dakota, during the Late Wisconsin and early Holocene. J. Paleolimnology 2: 159–172.Google Scholar
  40. Romanek, C. S., E. L. Grossman & J. W. Morse, 1992. Carbon isotope fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56: 419–30.Google Scholar
  41. Schwalb, A., G. S. Lister & K. R. Kelts, 1994. Ostracod carbonate δ18O-and δ13C-signatures of hydrological and climatic changes affecting Lake Neuchâtel, Switzerland, since the latest Pleistocene. J. Paleolimnology 11: 3–17.Google Scholar
  42. Schwarcz, H. & N. Eyles, 1991. Laurentide Ice Sheet extent inferred from stable isotopic composition (O, C) of ostracodes at Toronto, Canada. Quat. Res. 35: 305–320.Google Scholar
  43. Smith, A. J., 1991. Lacustrine Ostracodes as Paleohydrochemical Indicators in Holocene Lake Records of the North-Central United States. Ph. D. Thesis, Brown University.Google Scholar
  44. Smith, A. J., 1993. Lacustrine ostracodes as hydrochemical indicators in lakes of the north-central United States. J. Paleolimnology 8: 121–134.Google Scholar
  45. Stempoort, D. R., T. W. D. Edwards, M. S. Evans & W. M. Last, 1993. Paleohydrology and paleoclimate records in a prairie lake core: mineral, isotope and organic indicators. J. Paleolimnology 8: 135–147.Google Scholar
  46. Stuiver, M., 1975. Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary. Quat. Res. 5: 251–262.Google Scholar
  47. Valero-Garces, B. L., K. Kelts & E. Ito, 1995. Oxygen and carbon isotope trends and sedimentological evolution of a meromictic and saline lacustrine system: the Holocene Medicine Lake basin, North American Great Plains, USA. Palaeogeogr., Palaeoclimatol., Paleoecol. 117: 253–278.Google Scholar
  48. Vance, R. E., J. J. Clague & R. W. Mathewes, 1993. Holocene paleohydrology of a hypersaline lake in Alberta. J. Paleolimnology 8: 103–120.Google Scholar
  49. Veizer, J., 1983. Trace-elements and isotopes in sedimentary carbonates. In R. J. Reeder (ed.), Carbonates: Mineralogy and Chemistry. Reviews in Mineralogy, Washington DC, 265–300.Google Scholar
  50. von Grafenstein, U., H. Erlenkeuser, J. Müller & A. Kleinmann-Eisenmann, 1992. Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwissenschaften 79: 145–152.Google Scholar
  51. Winter, T. C. & M. Woo, 1990. Hydrology of lakes and wetlands. In M. G. Wolman and H. C. Riggs (eds), Surface Water Hydrology, The Geology of North America v. O-1. Geological Society of America, Boulder, Colorado: 159–184.Google Scholar
  52. Wright, H. E., Jr., 1967. A square-rod piston sampler for lake sediments. J. Sed. Petrol. 37: 975–76.Google Scholar
  53. Wright, H. E. Jr., 1992. Patterns of Holocene climatic change in the midwestern United States. Quat. Res. 38: 129–134.Google Scholar
  54. Xia, J., E. Ito & D. R. Engstrom, 1996a. Oxygen-isotope fractionation between ostracod and water: an experimental determination. Geochim. Cosmochim. Acta (in press).Google Scholar
  55. Xia, J., D. R. Engstrom & E. Ito, 1996b. Variation of stable-isotope and trace-element composition of lacustrine ostracodes from the northern Great Plains: effects of lake water chemistry and seasonal temperature variation. Geochim. Cosmochim. Acta (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J. Xia
    • 1
  • B. J. Haskell
    • 1
  • D. R. Engstrom
    • 1
  • E. Ito
    • 1
  1. 1.Limnological Research Center, Department of Geology & GeophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations