Marketing Letters

, Volume 8, Issue 3, pp 335–348 | Cite as

Representing Heterogeneity in Consumer Response Models 1996 Choice Conference Participants

  • Wayne Desarbo
  • Asim Ansari
  • Pradeep Chintagunta
  • Charles Himmelberg
  • Kamel Jedidi
  • Richard Johnson
  • Wagner Kamakura
  • Peter Lenk
  • Kannan Srinivasan
  • Michel Wedel
Article

Abstract

We define sources of heterogeneity in consumer utility functions relatedto individual differences in response tendencies, drivers of utility, formof the consumer utility function, perceptions of attributes, statedependencies, and stochasticity. A variety of alternative modelingapproaches are reviewed that accommodate subsets of these various sourcesincluding clusterwise regression, latent structure models, compounddistributions, random coefficients models, etc. We conclude by defining anumber of promising research areas in this field.

Heterogeneity latent structure models clusterwise regression random coefficients models compound distributions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allenby, G. M., and J. Ginter. (1996). On the identification of market segments, Working Paper, Ohio State University, Columbus, Ohio.Google Scholar
  2. Allenby, G. M., and P. E. Rossi. (1996). Marketing models of consumer heterogeneity. Working Paper, Ohio State University, Columbus, Ohio.Google Scholar
  3. Ansari, A., A. Gupta, and M. Morrin. (1996). Bayesian approaches for modeling multi level data in management. Working Paper, Columbia University.Google Scholar
  4. Bockenholt, U. (1993). A latent class regression approach for the analysis of recurrent choice data, British Journal of Mathematical and Statistical Psychology 46, 95–118.Google Scholar
  5. Boyles, R. A. (1983). On the convergence of the E-M algorithm. Journal of the Royal Statistical Society B 45, 47–50.Google Scholar
  6. Chintagunta, P., D. Jain, and N. Vilcassim. (1991). Investigating heterogeneity in brand preferences in logit model for panel data, Journal of Marketing Research 28, 417–428.Google Scholar
  7. DeSarbo, W. S., and D. Grisaffe. (1996). Combinatorial optimization approaches to normative market segmentation, 1996 ARTS Forum Presentation, June 1996.Google Scholar
  8. DeSarbo, W. S., and V. Mahajan. (1984). Constrained classification: the use of a priori information in cluster analysis, Psychometrika 49, 187–215.Google Scholar
  9. DeSarbo, W. S., R. Oliver, and A. Rangaswamy. (1989). A simulated annealing methodology for cluster wise linear regression, Psychometrika 54(4), 707–736.Google Scholar
  10. DeSarbo, W. S., V. Ramaswamy, and S. Cohen. (1995). Marketing segmentation with choice-based conjoint analysis, Marketing Letters 6, 137–148.Google Scholar
  11. Dempster, A. P., N. M. Laird, and R. B. Rubin. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society B 39, 1–38.Google Scholar
  12. Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. (1996). Markov Chain Monte Carlo in Practice. London: Chapman and Hall.Google Scholar
  13. Gonul, F., and K. Srinivasan. (1993a). Modeling multiple sources of heterogeneity in multinomial logit models: Methodological and managerial issues, Marketing Science 12, 213–229.Google Scholar
  14. Gonul, F., and K. Srinivasan. (1993b). Consumer purchase behavior in a frequently bought product category: Estimation issues and managerial insights from a hazard function model with heterogeneity, Journal of the American Statistical Association 88, 1219–1227.Google Scholar
  15. Gupta, S., and P. K. Chintagunta. (1992). On using demographic variables to determine segment membership in logit mixture models, Journal of Marketing Research 31, 128–136.Google Scholar
  16. Hagerty, M. R. (1985). Improving the predictive power of conjoint analysis; the use of factor analysis and cluster analysis, Journal of Marketing Research 22, 168–184.Google Scholar
  17. Heckman, J. J., and B. Singer. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data, Econometrica 52 271–320.Google Scholar
  18. Jedidi, K., S. Jagpal, and W. S. DeSarbo. (1996). STEMM: A general finite mixture structural equation model, Journal of Classification (forthcoming).Google Scholar
  19. Jedidi, K., H. Jagpal, and W. S. DeSarbo. (1996). Semi-Parametric Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity, Marketing Science (forthcoming).Google Scholar
  20. Jedidi, K., V. Ramaswamy, W. S. DeSarbo, and M. Wedel. (1996). On estimating finite mixtures of multivariate regression and simultaneous equation models, Structural Equation Modeling 3(3), 266–287.Google Scholar
  21. Kamakura, W. A. (1988). A least-squares procedure for benefit segmentation with conjoint experiments, Journal of Marketing Research 25, 157–167.Google Scholar
  22. Kamakura, W., B. D. Kim, and J. Lee. (1996). Modeling preference and structural heterogeneity in consumer choice, Marketing Science 15-2, 152–172.Google Scholar
  23. Kamakura, W. A., M. Wedel, and J. Agrawal. (1992). Concomitant variable latent class models for the external analysis of choice data, International Journal of Research in Marketing 11, 451–464.Google Scholar
  24. Krieger, A., and P. E. Green. (1996). Modifying cluster-based segments to enhance agreement with an exogenous response variable, Journal of Marketing Research 33, 351–363.Google Scholar
  25. Lenk, P. J., and W. S. DeSarbo. (1996). Bayesian inference of finite mixture, random effects, generalized linear models, Working Paper, University of Michigan.Google Scholar
  26. Lenk, P. J., W. S. DeSarbo, P. E. Green, and M. R. Young. (1996). Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs, Marketing Science 15-2, 173–191.Google Scholar
  27. Lilien, G. L., P. Kotler, and K. S. Moorthy. (1992). Marketing Models. New Jersey: Prentice-Hall Inc.Google Scholar
  28. Longford, N. T. (1993). Random Coefficient Models. New York: Oxford University Press.Google Scholar
  29. MacReady, G. B., and C. M. Dayton. (1980). The nature and use of state mastery models. Applied Psychological Measurement 4, 493–516.Google Scholar
  30. Poulsen, C. A. (1982). Latent Structure Analysis with Choice Modeling Applications. Aarhus: Aarhus School of Business Administration and Economics.Google Scholar
  31. Ramaswamy, V., E. W. Anderson, and W. S. DeSarbo. (1994). Cluster wise negative binomial regression for count data analysis. Management Science 40, 405–412.Google Scholar
  32. Ramaswamy, V., R. Chatterjee, and S. Cohen. (1996). Joint segmentation on distinct interdependent bases with categorical data, Journal of Marketing Research 33, 337–350.Google Scholar
  33. Rust, R. T., D. Simester, R. J. Broadie, and V. Nilikant. (1995). Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combination of Criteria, Management Science 41, 322–333.Google Scholar
  34. Späth, H. (1979). Algorithm 39: Cluster wise linear regression. Computing 22, 367–373.Google Scholar
  35. Spath, H. (1985). Cluster Dissection and Analysis Theory, FORTRAN Programs, Examples. England: Ellis Horwood Limited.Google Scholar
  36. Titterington, D. M., A. F. M. Smith, and U. E. Makov. (1985). Statistical Analysis of Finite Mixture Distributions. New York: Wiley.Google Scholar
  37. Vriens, M., M. Wedel, and T. Wilms. (1996). Metric conjoint segmentation methods: a Monte Carlo comparison, Journal of Marketing Research 33, 73–85.Google Scholar
  38. Wedel, M., and W. S. DeSarbo. (1994). A review of latent class regression models and their applications. In Richard P. Bagozzi (ed.), Advanced Methods for Marketing Research 353–388.Google Scholar
  39. Wedel, M., and W. S. DeSarbo. (1995). A mixture likelihood approach for generalized linear models, Journal of Classification 12, 21–55.Google Scholar
  40. Wedel, M., and C. Kistemaker. (1989). Consumer benefit segmentation using cluster wise linear regression. International Journal of Research in Marketing 6, 45–59.Google Scholar
  41. Wedel, M., and J. E. M. Steenkamp. (1989). A fuzzy cluster wise regression approach to benefit segmentation, International Journal of Research in Marketing 6(4), 241–258.Google Scholar
  42. Wedel, M., and J. E. M. Steenkamp. (1991). A cluster wise regression method for simultaneous fuzzy market structures and benefit segmentation, Journal of Marketing Research 28, 385–396.Google Scholar
  43. Wu, C. F. J. (1983). On the convergence properties of the E-M algorithm. Annals of Statistics 11, 95–103.Google Scholar
  44. Zeger, S. L., and M. R. Karim. (1991). Generalized linear models with random effect; a Gibbs sampling approach, Journal of the American Statistical Association 86(413), 79–86.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Wayne Desarbo
    • 1
  • Asim Ansari
    • 2
  • Pradeep Chintagunta
    • 3
  • Charles Himmelberg
    • 2
  • Kamel Jedidi
    • 2
  • Richard Johnson
    • 4
  • Wagner Kamakura
    • 5
  • Peter Lenk
    • 6
  • Kannan Srinivasan
    • 7
  • Michel Wedel
    • 8
  1. 1.Department of Marketing, College of Business AdministrationPennsylvania State UniversityUniversity Park
  2. 2.Columbia UniversityUSA
  3. 3.University of ChicagoUSA
  4. 4.Sawtooth SoftwareUSA
  5. 5.University of PittsburghUSA
  6. 6.University of MichiganUSA
  7. 7.Carnegie Mellon UniversityUSA
  8. 8.University of GroningenUSA

Personalised recommendations