Journal of Paleolimnology

, Volume 17, Issue 1, pp 51–65 | Cite as

A reconnaissance study of oxygen, hydrogen and strontium isotopes in geochemically diverse lakes, Western Nebraska, USA

  • David C. Gosselin
  • Peter E. Nabelek
  • Zell E. Peterman
  • Steve Sibray


Reconnaissance δ18O,, δD, and δ87Sr data for fifteen lakes in the Western Lakes Region of the Sand Hills of Nebraska indicate dynamic hydrologic systems. The rather narrow range of δ87Sr from lake water (1.1 to 2.1) and groundwater (0.9 to 1.7) indicates that the groundwater is generally unradiogenic. Groundwater residence times and relatively unradiogenic volcanic ash within the dune sediments control the δ87Sr values. Based on the mutual variations of δ18O and δD, the lakes can be divided into three groups. In Group 1, both δ18O and δD values increase from spring to fall. The δ18O and δD values in Group 2 decreased from spring to fall. Group 3 are ephemeral lakes that went dry some time during 1992. The data and isotopic modeling show that variations in the ratio of evaporation relative to groundwater inflow, local humidity conditions, and the δa has substantial influence on the isotopic composition. In addition, isotopic behavior in ephemeral lakes can be rather unusual because of the changing activities of water and mineral precipitation and redissolution. The annual and interannual isotopic variability of these lakes which is reflected in the paleonvironmental indicators may be the rule rather than the exception in these types of systems.

Stable isotopes strontium isotopes hydrology paleolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlbrandt, T. S. & S. G. Fryberger, 1980. Eolian deposits in the Nebraska Sand Hills, U.S.A. U.S. Geol. Surv. Prof. Paper 1120A: 1–24.Google Scholar
  2. Ahlbrandt, T. S., J. B. Swinehart & D. G. Maroney. 1983. The dynamic dunefields of the Great Plains and Rocky Mountain basins. In M. E. Brookfield & T. S. Ahlbrandt (eds) Eolian Sediments and Processes. Elsevier, Amsterdam: 379–406.Google Scholar
  3. Aleinikoff, J. N., D. R. Muhs & M. Walter, 1991. Lead isotopic evidence for the origin of eolian sands on the central Great Plains. Geol. Soc. Amer. Abs. with Programs 23: A108.Google Scholar
  4. Banner, J. L., G. J. Wasserburg, P. F. Dobson, A. B. Carpenter & C. H. Moore, 1989. Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim. Cosmochim. Acta 53: 383–398.Google Scholar
  5. Benson, L. V., P. A. Meyers & R. J. Spencer, 1991. Change in the size of Walker Lake during the past 5000 years. Palaeogeogr. Palaeoclim. Palaeoecol. 81: 189–214.Google Scholar
  6. Coleman, M. L., T. J. Shepard, J. J. Durham, J. J. Rouse & G. R. Moore, 1982. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54: 993–995.Google Scholar
  7. Collerson, K. D., W. J. Ullman & T. Torgerson, 1988. Groundwaters with unradiogenic 87Sr/86Sr ratios in the Great Artesian Basin, Australia. Geology 16: 59–63.Google Scholar
  8. Dincer, T., 1968. The use of oxygen-18 and deuterium concentrations in the water balance of lakes. Water Res. Res. 4: 1289–1306.Google Scholar
  9. Environmental Data Service, 1968. Climatic Atlas of the United States, Washington, D.C., U.S. Government Printing Office.Google Scholar
  10. Fontes, J. Ch., 1980. Environmental isotopes in groundwater hydrology. In P. Fritz & J. Ch. Fontes (eds) Handbook of Environmental Geochemistry. Elsevier, Amsterdam: 75–134.Google Scholar
  11. Friedman, I. & J. R. O'Neil, 1977. Data of Geochemistry. U.S. Geol. Surv. Prof Paper 440-KK: KK1–KK12.Google Scholar
  12. Fritz, P., T. W. Anderson & C. F. M. Lewis, 1975. Late Quaternary climatic trends and history of Lake Eric from stable isotope studies. Science 190: 267–269.Google Scholar
  13. Gat, J. R., 1981. Lakes. In J. R. Gat & R. Gonfiantini (eds) Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. IAEA Tech. Rep. Series, No. 210, Vienna.Google Scholar
  14. Gat, J. R. & C. Bowser, 1991. The heavy isotope enrichment of water in coupled evaporative systems. In H. P. Taylor Jr., J. R. O'Neil, I. R. Kaplan (eds) Stable Isotope Geo-chemistry: A Tribute to Samuel Epstein Geochemical Society Spec. Pub. 3: 159–168.Google Scholar
  15. Gilath, C. & R. Gonfiantini, 1983. Lake Dynamics. In International Atomic Energy Agency, Guidebook on Nuclear Techniques in Hydrology. Tech. Rep. Ser. 91: 129–161.Google Scholar
  16. Gonfiantini, R., 1986. Environmental isotopes in lake studies. In P. Fritz, J. Ch. Fontes (eds) Handbook of Environmental Isotope Geochemistry Elsevier, Amsterdam: 113–168.Google Scholar
  17. Gosselin, D. C., S. Sibray & J. Ayers, 1994. Geochemistry of closed-basin, K-rich alkaline lakes, western Sand Hills, Nebraska, U.S.A. Geochim. Cosmochim. Acta 58: 1403–1418.Google Scholar
  18. Gosselin, D. C., 1995. An overview of geochemically diverse lakes, Western Nebraska, U.S.A. J. Paleolimnol. in review.Google Scholar
  19. Heaton, T. H. E., J. A. Holmes & N. D. Bridgwater, in press. Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. The Holocene.Google Scholar
  20. Holmes, J. A., 1996. Trave element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction, J. Paleoliminology 17: 67–83.Google Scholar
  21. Horita, J., 1989. Analytical Aspects of stable isotopes in brines. Chem. Geol. (Isot. Geosci. Sec.) 79: 107–112Google Scholar
  22. Jones, L. M. & G. Fuare, 1972. Strontium isotope geochemistry of Great Salt Lake, Utah. Geol. Soc. Amer. Bull. 83: 1875–1879.Google Scholar
  23. Keech, C. F. & R. Bentall, 1982. Dunes on the Plains. Resource Report No. 4 (3rd ed.), Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln: 18 pp.Google Scholar
  24. Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson & J. W. Valley, 1990a. Estimating groundwater exchange with lakes 1. The stable isotope mass balance method. Water Res. Res. 26: 2445–2453.Google Scholar
  25. Krabbenhoft, D. P., M. P. Anderson & C. J. Bowser, 1990b. Estimating groundwater exchange with lakes 2. Calibration of a threedimensional, solute transport model to a stable isotope plume. Water Res. Res. 26: 2455–2462.Google Scholar
  26. Lawson, M. P., K. F. Dewey, & R. E. Neild, 1977. Climatic Atlas of Nebraska, University of Nebraska Press, Lincoln.Google Scholar
  27. Lent, R. M., H. E. Gaudette & W. B. Lyons, 1995. Isotopic geochemistry of the Devils Lake drainage system, North Dakota. GSA Abst. with Prog., North Central-South Central Sectional Meeting, Lincoln, NE.Google Scholar
  28. Lipman, P. W., B. R. Doe, C. E. Hedge & T. A. Steven, 1978. Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Am. Bull. 89: 59–82.Google Scholar
  29. Lister, G. S., K. Kelts, K. Z. Chen, Y. Jun-Qing & F. Niessen, 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for Ostracoda since the latest Pleistocene. Palaeogeogr. Palaeoclim. Palacoecol. 84: 141–162.Google Scholar
  30. Loope, D. B. & J. B. Swinehart, 1992. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimate implications. Geol. Soc. Amer. Abs. with Progs. 24: A180.Google Scholar
  31. Loope, D. B., J. B. Swinehart & J. P. Mason, 1995. Dune-dammed paleovalleys of the Nebraska Sand Hills: Intrinsic versus climatic controls on the accumulation of lake and marsh sediments. Geol. Soc. Amer. Bull. 107: 396–406.Google Scholar
  32. Majoube, M., 1971. Fractionnement en oxygene-18 et en deuterium entre l'eau et sa vapeur. J. Chim. Phys. 197: 1423–1436.Google Scholar
  33. Peterman, Z. E. & J. S. Stuckless, 1992. Application of strontium isotopes and other radiogenic tracer isotopes to paleohydrologic studies. In Paleohydrologic Methods and Their Applications, Proc. of Nuclear Energy Agency Workshop: 59–84.Google Scholar
  34. Peterman, Z. E., J. S. Stuckless, S. A. Mahan, B. D. Marshall, E. D. Gutentag & J. S. Downey, 1992. Strontium isotope characterization of the Ash Meadows Groundwater System, Southern Nevada, USA. In Kharaka & Maest, (eds) Water-Rock Interaction Balkema, Rotterdam: 825–829.Google Scholar
  35. Plummer, L. N., D. L. Parkhurst, G. W. Flemming & S. A. Dunkle, 1988. PHRQPITZ, A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines. USGS Water Res. Invest. Rep. 88–4153.Google Scholar
  36. Rundquist, D., G. Murray & L. Queen, 1985. Airborne thermal mapping of a 'flow through' lake in the Nebraska Sand Hills. Water Res. Bull. 21: 989–994.Google Scholar
  37. Sacks, L., J. Herman, L. Konikow & A. Vela, 1992. Seasonal dynamics of groundwater-lake interactions at Donana National Park, Spain J. Hydrology 136: 123–154.Google Scholar
  38. Schreurs, R. L., 1954. Configuration of the water table in Nebraska. USGS Hydrol. Invest. Atlas, HA-4.Google Scholar
  39. Sofer, Z. & J. R. Gat, 1975. The isotope composition of evaporating brines: effect on the isotopic activity ratio in saline solutions. Earth Planet. Sci. Lett. 26: 179–186.Google Scholar
  40. Stanley, K. O. & G. Faure, 1979. Isotopic composition and source of strontium in sandstone sediments: The High Plains sequence of Wyoming and Nebraska. Jour. Sed. Pet. 49: 45–54.Google Scholar
  41. Swanson, G. A., T. C. Winter, V. A. Adomatis & J. W. LaBaugh, 1988. Chemical characteristics of Prairie Lakes in South-central North Dakota-Their potential for influencing use by fish and wildlife. U.S. Fish Wildlife Tech. Rep. 18: 44 pp.Google Scholar
  42. Swinehart, J. B., 1989. Wind-blown deposits. In A. S. Bleed & C. A. Flowerday (eds) An Atlas of the Sand Hills. Resource Atlas No. 5, Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln: 42–56.Google Scholar
  43. Swinehart, J. B., V. L. Souders, H. M. DeGraw & R. F. Diffendal Jr., 1985. Cenozoic paleogeography of western Nebraska, In Flores, R. M. & Kaplan, S. S. (eds) Cenozoic Paleogeography of West-Central United States Rocky Mountain Section-S.E.P.M.: 209–229.Google Scholar
  44. Talbot, M. R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopes in primary lacustrine carbonates. Chem. Geol. (Isot. Geosci. Sect.) 80: 261–279.Google Scholar
  45. Van Stempvoort, D. R., T. W. D. Edwards, M. S. Evans, 1993. Paleohydrology and paleoclimate records in a saline prairie lake core: mineral, isotope and organic indicators. J. Paleolimnol. 8: 135–147.Google Scholar
  46. Vennemann, T. W. & J. R. O'Neil, 1993. A simple inexpensive method of hydrogen isotope analyses of water, minerals, and rocks based on zinc reagent. Chem. Geol. 103: 227–234.Google Scholar
  47. Von Grafenstein, U., H. Erlenkeuser, A. Kleinmann, J. Muller & P. Trimbom, 1994. High-frequency climatic oscillations during the last deglaciation as revealed by oxygen-isotope records of benthic organisms (Ammersee, southern Germany). J. Paleolimnol. 11: 349–357.Google Scholar
  48. Wickman, F. E. & G. Aberg, 1987. Variations in the 87Sr/86Sr ratio in lake waters from central Sweden. Nordic Hydrology 18: 21–32.Google Scholar
  49. Wilhite, D. A. & K. G. Hubbard, 1989. Climate. In A. S. Bleed & C. A. Flowerday (eds) An Atlas of the Sand Hills. Resource Atlas No. 5, Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln: 17–28.Google Scholar
  50. Winter, T. C., 1986. Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage lakes in the Sand Hills of Nebraska, U.S.A. J. Hydro. 86: 221–237.Google Scholar
  51. Wood, W. W. & W. E. Sanford, 1990. Groundwater control of evaporite deposition. Econ. Geol. 85: 1226–1235.Google Scholar
  52. Yurtsever, Y. & J. R. Gat, 1981. Atmospheric Waters. In J. R. Gat & R. Gonfiantini (eds) Stable Isotope Hydrology: Deuterium and Oxygen-18 in theWater Cycle. IAEA Tech. Rep. Series, No. 210, Vienna: 103–142.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • David C. Gosselin
    • 1
  • Peter E. Nabelek
    • 2
  • Zell E. Peterman
    • 3
  • Steve Sibray
    • 1
  1. 1.Conservation and Survey Division, Institute of Agriculture and Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Geological SciencesUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.U.S. Geological SurveyDenverUSA

Personalised recommendations