Journal of Paleolimnology

, Volume 19, Issue 1, pp 41–54 | Cite as

A paleolimnological study of eutrophied Lake Arendsee (Germany)

  • D. L. Findlay
  • H. J. Kling
  • H. Rönicke
  • W. J. Findlay


To study the algal microfossil assemblages of eutrophic Lake Arendsee (Germany) prior to the beginning of a restoration project, a 47-cm long freeze core, dating back to ca 1800, was taken from the deepest area of the lake. Based on the CRS modeled 210Pb and 137Cs profiles from the core, 1948 is around 15 cm and the sedimentation rate has increased from ∼ 21.2 mg cm-2 yr-1 in 1900 to ∼ 56.6 mg cm-2 yr-1 in 1986. The sediments were dominated by three centric diatoms. Stephanodiscus binatus, a species associated with eutrophic environments, dominated the upper 19 cm of the core. Cyclotella rossii, a species commonly found in less productive freshwater systems, was found to dominate the lower portion of the core and was absent above 16 cm. S. agassizensis was found throughout the core. In addition to the centric diatoms, three penate diatoms were found to be abundant. Fragilaria crotonensis was found throughout the core, but was most abundant from 19 cm to 16 cm. Asterionella formosa was prevalent below 15 cm, while Diatoma elongatum was found to be common from 17 cm to the surface. The abundances of algal remains of cyanobacteria, chlorophytes, cryptophytes and dinoflagellates decrease dramatically below 25 cm. Zooplankton remains were most abundant around 20 cm, with copepod spermatophores, fecal pellets and protozoa remains most common in the lower portion of the core. The major species shifts observed in the core from Lake Arendsee occur in a transition zone between 20 cm and 15 cm (1920–1940), a time when agricultural production was being increase with the use of inorganic fertilizer.

Lake Arendsee (Germany) paleolimnology nutrients eutrophication diatoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining predisturbance nutrient conditions. Hydrobiologia 253: 357–366.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.Google Scholar
  3. Bauch, G., 1953. Die kleine Maräane (Coregonous albula) im Arendsee in der Altmark. Mitt. f. Naturkunde und Vorgeschichte a.d. Museum füur Kulturgeschichte in Magdeburg 3: 109–140.Google Scholar
  4. Battarbee, R.W., 1973. A new method for the estimation of absolute microfossil numbers, with reference special to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  5. Chang, P. S. S., D. F. Malley, W. J. Findlay, G. Mueller & R. T. Barnes, 1980. Species composition and seasonal abundance of zooplankton in Lake 227, northwestern Ontario, 1969-1978. Can. Data Rep. Fish. aquat. Sci. 182: iv + 101 pp.Google Scholar
  6. Charles, D. F., 1986. Diatom analysis methods used for Adirondack Lakes. In Paleoecological Investigation of Recent Lake Acidification (PIRLA). Methods and project description. Publ. Electric Power Research Institute, Palo Alto. California.Google Scholar
  7. Cleve-Euler, A., 1951. Die Diatomeen von Schweden und Finland. Kungliga Svenka vetenskapsakademiens handlingar, 4th Ser., 2: 1–163.Google Scholar
  8. Davis, R. B. & F. Berge, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments, II Diatom stratigraphy and inferred pH. In Drablos, D. & A. Tollan (eds), Ecological Impact Acid Precipitation, SNSF Project, Oslo, Norway: 383 pp.Google Scholar
  9. Dixit, A. S., S. S. Dixit & R. D. Evans, 1988. The relationship between sedimentary diatom assemblages and lakewater pH in 35 Quebec lakes, Canada. J. Paleolimnol. 1: 23–38.Google Scholar
  10. Flett, R. J., D. W. Schindler, R. D. Hamilton & N. E. R. Campbell, 1980. Nitrogen fixation in Canadian Precambrian Shield Lakes. Can. J. Fish. aquat. Sci. 37: 494–505.Google Scholar
  11. Findlay, D. L. & J. A. Shearer, 1992. Relationship between sedimentary diatom assemblages and lakewater pH values in the Experimental Lakes Area. J. Paleolimnol. 7: 145–156.Google Scholar
  12. Findlay, D. L., R. E. Hecky, L. L. Hendzel, M. P. Stainton & G. W. Regehr, 1994. Relationship between N2fixation and heterocyst abundance and its relevance to the nitrogen budget of Lake 227. J. Fish. aquat. Sci. 51: 2254–2266.Google Scholar
  13. Genkal, S. I., 1993. Large-celled, undulate species of the genus Stephanodiscus Ehr. in USSR reserviors: Morphology, ecology and distribution. Diatom Research 8: 45–64.Google Scholar
  14. Halbfass, W., 1896. Der Arendsee in der Altmark. Petermanns Mitt. aus J. Perthes geograph. Anst. 42: 173–187.Google Scholar
  15. Håakansson, H., 1990. A comparison of Cyclotella krammeri sp. nov. and C. schumannii Håkansson stat.nov. with similar species. Diatom Research 5: 261–271.Google Scholar
  16. Håakansson, H. & H. Kling, 1989. A light and electron microscope study of previously described and new Stephanodiscus species (Bacillariophyceae) from central and northern Canadian lakes, with ecological notes on the species. Diatom Research 4: 269–288.Google Scholar
  17. Håakansson, H. & H. Kling, 1990 The current status of some very small freshwater diatoms of the genera Stephanodiscus and Cyclostephanos. Diatom Research 5: 273–287.Google Scholar
  18. Håakansson, H. & B. Meyer, 1994. A comparative study of species in the Stephanodiscus niagarae-complex and a description of S. heterostylus sp. nov. Diatom Research 9: 65–85.Google Scholar
  19. Hecky, R. E., 1993. Eutrophication of Lake Victoria. Int. Ver. Theor. Agnew. Limnol. Verh. 25: 39–48.Google Scholar
  20. Holmgren, S., 1983. Phytoplankton biomass and algal composition in natural and polluted subarctic lakes. Acta. Univ. Ups. Abstr. Uppsala Diss. Sci. 674: 125 pp.Google Scholar
  21. Hupfer, M., R. G #x00E4;achter, H. Röonicke, H. C. Treutler & P. Morgenstern, 1997. Using sediment core investigations to study the early diagenesis and release of phosphorus. (in prep.)Google Scholar
  22. Kling, H. J., 1993. Asterionella formosa Ralfs: The process of rapid size reduction and its possible ecological significance. Diatom Research. 8: 475–479.Google Scholar
  23. Kling, H. J., 1996. Fossil and modern phytoplankton from Lake Winnipeg. In Todd, B. J., C. F. M. Lewis, L. H. Thorleifson & E. Nielson (eds), Lake Winnipeg project: cruise report and scientific results. Geological Survey of Canada, 3113: 283–310.Google Scholar
  24. Korde, N. V., 1966. Algal remains in lake sediments - a contribution to development history of lakes and the surrounding regions. Ergebnisse der Limnologie 3: 1–38 (English translation by Fish. Res. Bd Can. 1371).Google Scholar
  25. Levine, S. N. & W. M. Lewis, 1987. A numerical model of nitrogen fixation and its application to Lake Valencia, Venezuela. Freshwat. Biol. 17: 265–274.Google Scholar
  26. Meriläainen, J., 1967. The diatom flora and the hydrogen ion concentration of water. Ann. Bot. Fenn. 4: 51–58.Google Scholar
  27. Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophyceae in Lake Gribsøo. In Berg, K. & I. Peterson (eds), Studies on Humic, Acid Lake Gribsøo. Folia Limnological Scandinavia 8: 32–94, pl. 1-12.Google Scholar
  28. Pantocsek, J., 1901. Abalaton kovamoszatai vaqy Bacillariar. Budapest.Google Scholar
  29. Röonicke, H., 1986. Beitrag zur fixation des molekularen Stickstoffs durch planktische Cyanophycean in einem dimiktischen, schwach durchflossenen Standgewäasser. Ph.D. thesis, Humbolt-Universit äat, Berlin: 129 pp.Google Scholar
  30. Rö0nicke, H., H. Klapper, M. Beyer, J. Tittel & B. Zippel, 1995. Possibility to restoration of the eutrophic Lake Arendsee by calcite flushing. In Proceedings of the 6th International Conference on the Conservation and Management of Lakes - Kasumigaura '95, 1: 471–474.Google Scholar
  31. Scharf, B.W., W. Wedel & I. Jüuttener, 1995. Fossil (Holocene) and living Ostracoda and Cladocera (Crustacea) from Lake Arendsee, Germany. In Riha (ed.), Ostracoda and Biostratigraphy. Balkema, Rotterdam: 321–332.Google Scholar
  32. Schindler, D.W., 1974. Eutrophication and recovery in Experimental Lakes: Implications for lake management. Science 184: 879–899.Google Scholar
  33. Schindler, D.W., 1975.Whole-lake eutrophication experiments with phosphorus, nitrogen, and carbon. Int. Ver. Theor. Angew. Limnol. Verh. 19: 3221–3231.Google Scholar
  34. Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 195: 260–262.Google Scholar
  35. Schultz, H., 1992. Bestandsgröoße, Wachstum und Zooplaktonsum der Kleinen Maräne (Coregonus albula) und anderer Fischarten im Arendsee. Limnologica 22: 355–373.Google Scholar
  36. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by bluegreen algae in lake phytoplankton. Science 221: 669–671.Google Scholar
  37. Smith, V. H., 1990. Nitrogen, phosphorus, and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol. Oceanogr. 35: 1852–1859.Google Scholar
  38. Smol, J. P., 1986. Chrysophycean microfossils as indicators of lakewater pH. In Smol, J. P., R. W. Batterbee, R. B. Davis & J. Meriläainen (eds), Diatoms and Lake Acidity. Junk, Dordrecht, The Netherlands: 97–104.Google Scholar
  39. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. J. aquat. Ecosystem. Health 1: 49–58.Google Scholar
  40. Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1977. The chemical analysis of fresh water. 2nd ed. Can. Fish. Mar. Serv. Spec. Publ. 25: 180 pp.Google Scholar
  41. Teubner, K., 1995. A light microscopical investigation and multivariate statistical analysis of heterovalvar cells of Cyclotella-species (Bacillariophyceae) from lakes of the Berlin-Brandenburg region. Diatom Res. 10: 191–205.Google Scholar
  42. van Geel, B., L. R. Moor, M. Ralska-Jasiewiczowa & T. Goslar, 1994. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphateeutrophication of Lake Gosciaz (Cental Poland). Rev. Paleobot. Palynol. 83: 97–105.Google Scholar
  43. Wilkinson, P., 1985. The determination of environmental levels of uranium and thorium series isotopes and 137Cs in aquatic and terrestrial samples. Can. Spec. Publ. Fish. aquat. Sci. 78: 51 pp.Google Scholar
  44. Zacharias, O., 1899. Das Plankton des Arendsees. Biol. Clb. 19: 95–102.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D. L. Findlay
    • 1
  • H. J. Kling
    • 1
  • H. Rönicke
    • 2
  • W. J. Findlay
    • 1
  1. 1.Department of Fisheries and Oceans Central andArctic Region Freshwater InstituteWinnipegCanada (email
  2. 2.Department of Inland Water Research Am BiederitzerUFZ Center for Environmental Research Leipzig-HalleMagdeburgGermany

Personalised recommendations