Advertisement

Journal of Paleolimnology

, Volume 19, Issue 2, pp 181–198 | Cite as

The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with pal\sgmaelig;olimnological implications

  • David M. Livingstone
  • André F. Lotter
Article

Abstract

In pal\sgmaelig;olimnological studies, inference models based on aquatic organisms are frequently used to estimate summer lake surface water temperatures. However, the calibration of such models is often unsatisfactory because of the sparseness of measured water temperature data. This study investigates the feasibility of using air temperature data, usually available at much higher resolution, to calibrate such models by comparing regional air temperatures with surface water temperatures in 17 lakes on the Swiss Plateau. Results show that altitude-corrected air temperatures are sufficiently uniform over the entire Swiss Plateau to allow local air temperatures at any particular lake site to be adequately estimated from standard composite air temperature series. In early summer, day-to-day variability in air temperature is reflected extremely well in the temperature of the uppermost metre of the water column, while monthly mean air temperatures correspond well, with respect to both absolute value and interannual variations, with water temperatures in most of the epilimnion. Standardised altitude-corrected air temperature series may therefore be a useful alternative to surface water temperatures for the purposes of calibrating lake temperature inference models. In Northern Hemisphere temperate regions, mean air and water temperatures are likely to correspond most closely in July, suggesting that calibration and reconstruction efforts be concentrated on this month.

air temperature lake water temperature temperature inference models Switzerland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann, B., 1989. Periods of rapid environmental change around 12 500 and 10 000 years B.P., as recorded in Swiss lake deposits. J. Paleolimnol. 1: 269–277.Google Scholar
  2. Arai, T., 1981. Climatic and geomorphological influences on lake temperature. Verh. int. Ver. Limnol. 21: 130–134.Google Scholar
  3. Birks, H. J. B., 1995. Quantitative palæoenvironmental reconstructions. Statistical modelling of Quaternary science data. In Maddy, D. & J. S. Brew (eds), Cambridge, Quat. Res. Assoc. 5: 161–254.Google Scholar
  4. Birks, H. J. B. & H. H. Birks, 1980. Quaternary palæoecology. Arnold, London, 289 pp.Google Scholar
  5. Bruce, J., H. Lee & E. Haites (eds), 1996. Climate change 1995 – the science of climate change. Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, 448 pp.Google Scholar
  6. Chaix, L., 1983. Malacofauna from the late glacial deposits of Lob-sigensee (Swiss Plateau). Studies in the late Quaternary of Lob-sigensee 5. Rev. Paléeobiol. 2: 211–216.Google Scholar
  7. Dingman, S. L., 1972. Equilibrium temperatures of water surfaces as related to air temperature and solar radiation. Wat. Resour. Res. 8: 42–49.Google Scholar
  8. Edinger, J. E., D. W. Duttweiler & J. C. Geyer, 1968. The response of water temperatures to meteorological conditions. Wat. Resour. Res. 4: 1137–1143.Google Scholar
  9. Gates, D. M., 1993. Climate change and its biological consequences. Sinauer, Sunderland, Mass., 280 pp.Google Scholar
  10. Hann, B. J., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change: a comment on Walker et al. (1991). Can. J. Fish. aquat. Sci. 49: 1274–1276.Google Scholar
  11. Hofmann, W., 1985. Developmental history of Lobsigensee: subfossil Chironomidæ (Diptera). Diss. Bot. 87: 154–156.Google Scholar
  12. Hofmann, W., 1986. Chironomid Analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palæoecology and Palæohydrology. Wiley, Chichester: 715–727.Google Scholar
  13. Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subject to climate change. Clim. Change 24: 187–211.Google Scholar
  14. Hostetler, S. W., 1995. Hydrological and thermal response of lakes to climate: description and modeling. In Lerman, A., D. Imboden & J. Gat (eds), Physics and chemistry of lakes, 2nd ed. Springer-Verlag, Berlin: 63–82.Google Scholar
  15. Houghton, J. J., L. G. Meiro Filho, B. A. Callender. N. Harris, A. Kattenberg & K. Maskell (eds), 1996. Climate change 1995 – the science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, 572 pp.Google Scholar
  16. Kutschke, I., 1966. Die thermischen Verhäaltnisse im Züurichsee zwischen 1937 und 1963 und ihre Beeinflussung durch meteorologische Faktoren. Vierteljahrsschr. naturf. Ges. Züurich 111: 47–124.Google Scholar
  17. Livingstone, D. M., 1993a. Lake oxygenation: application of a one box model with ice cover. Int. Revue ges.Hydrobiol. 78: 465–480.Google Scholar
  18. Livingstone, D. M., 1993b. Temporal structure in the deepwater temperature of four Swiss lakes: a short-term climatic change indicator? Verh. int. Ver. Limnol. 25: 75–81.Google Scholar
  19. Livingstone, D. M., 1997a. Breakup dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Change (in press)Google Scholar
  20. Livingstone, D. M., 1997b. An example of the simultaneous occurrence of climatedriven 'sawtooth' deepwater warming/cooling episodes in several Swiss lakes. Verh. int. Ver. Limnol. 26 (in press)Google Scholar
  21. Livingstone, D. M. & D. M. Imboden, 1989. Annual heat balance and equilibrium temperature of Lake Aegeri, Switzerland. Aquat. Sci. 51: 351–369.Google Scholar
  22. Livingstone, D. M. & D. M. Imboden, 1996. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can. J. Fish. aquat. Sci. 53: 924–932.Google Scholar
  23. Livingstone, D. M. & F. Schanz, 1994. The effects of deepwater siphoning on a small, shallow lake: a longterm case study. Arch. Hydrobiol. 132: 15–44.Google Scholar
  24. Lotter, A. F., 1988. Paläaoöokologische und paläaolimnologische Studie des Rotsees bei Luzern. Pollen-, grossrest-, diatomeen-und sedimentanalytische Untersuchungen. Diss. Bot. 124: 1–187.Google Scholar
  25. Lotter, A. F., 1989a. Subfossil and modern diatom plankton and the paleolimnology of Rotsee (Switzerland) since 1850. Aquat. Sci. 51: 338–350.Google Scholar
  26. Lotter, A. F., 1989b. Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquat. Sci. 51: 19–30.Google Scholar
  27. Lotter, A. F. & Boucherle, 1984. A Late-Glacial and Post-Glacial history of Amsoldigersee and vicinity, Switzerland. Schweiz. J. Hydrol., 46: 192–209.Google Scholar
  28. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern cladocera, chironomid, diatom and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolimnol. (in press).Google Scholar
  29. Lotter, A. F. & H. J. B. Birks. The separation of the influence of nutrients and climate on the varve timeseries of Baldeggersee, Switzerland. Aquat. Sci. (in press).Google Scholar
  30. Magnuson, J. J., J. D. Meisner & D. K. Hill, 1990. Potential changes in the thermal habitat of Great Lakes fish after global warming. Trans. am. Fish. Soc. 119: 254–264.Google Scholar
  31. Marti, D. & D. M. Imboden, 1986. Thermische Energieflüsse an der Wasseroberfläche: Beispiel Sempachersee. Schweiz. Z. Hydrol. 48: 196–229.Google Scholar
  32. McCombie, A. M., 1959. Some relations between air temperatures and the surface water temperature of lakes. Limnol. Oceanogr. 4: 252–258.Google Scholar
  33. McDonald, M. E., A. E. Hershey & M. C. Miller, 1996. Global warming impacts on lake trout in arctic lakes. Limnol. Oceanogr. 41: 1102–1108.Google Scholar
  34. Meisner, J. D., J. L. Goodier, H. A. Regier, B. J. Shuter & W. J. Christie, 1987. An assessment of the effects of climate warming on Great Lakes basin fishes. J. Great Lakes Res. 13: 340–352.Google Scholar
  35. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palæotemperature reconstructions. J. Paleolimnol. (in press)Google Scholar
  36. Peglar, S.M., 1993. The mid-Holocene Ulmus decline at DissMere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. Holocene 3: 1–13.Google Scholar
  37. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Can. J. Paleolimnol. 13: 21–49.Google Scholar
  38. Rabiner, L. R. & B. Gold, 1975. Theory and application of digital signal processing. Prentice-Hall, Englewood Cliffs, N.J., 762 pp.Google Scholar
  39. Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci. 52: 360–380.Google Scholar
  40. Schindler, D. W., K. G. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on lakes of the central boreal forest. Science 250: 967–970.Google Scholar
  41. Shuter, B. J., D. A. Schlesinger & A. P. Zimmerman, 1983. Empirical predictors of annual surface water temperature cycles in North American lakes. Can. J. Fish. aquat. Sci. 40: 1838–1845.Google Scholar
  42. Simola, H., I. Hanski & M. Liukkonen, 1990. Stratigraphy, species richness and seasonal dynamics of plankton diatoms during 418 years in Lake Lovojäarvi, South Finland. Ann. Bot. Fenn. 27: 241–259.Google Scholar
  43. Smol, J. P., 1990. Paleolimnology: recent advances and future challenges. Mem. Ist. ital. Idrobiol. 47: 253–276.Google Scholar
  44. Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. int. Ver. Limnol. 24: 1240–1246.Google Scholar
  45. Smol, J. P., B. F. Cumming, M. S. V. Douglas & R. Pienitz, 1994. Inferring past climatic changes in Canada using paleolimnological techniques. Geosci. Can. 21: 113–118.Google Scholar
  46. De Stasio, B. T., Jr., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol. Oceanogr. 41: 1136–1149.Google Scholar
  47. Stefan, H. G., M. Hondzo, X. Fang, J. G. Eaton & J. H. McCormick, 1996. Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnol. Oceanogr. 41: 1124–1135.Google Scholar
  48. Straub, F., 1990. Hauterieve-Champr éeveyres 4. Diatoméees et reconstruction des environnements préhistoriques. Archéeol. Neuchâatelois 10: 1–96.Google Scholar
  49. Strzepek, K. R. & J. B. Smith (eds), 1995. As climate changes: international impacts and implications. Cambridge Univ. Press, Cambridge, UK, 213 pp.Google Scholar
  50. Sweers, H. E., 1976. A nomogram to estimate the heat-exchange coefficient at the air-water interface as a function of wind speed and temperature; a critical survey of some literature. J. Hydrol. 30: 375–401.Google Scholar
  51. ter Braak, C. J. F., S. Juggins, H. J. B. Birks & H. van der Voet, 1993. Weighted averaging partial least squares regression (WAPLS): definition and comparison with other methods for species-environment calibration. In G. P. Patil & C. R. Rao (eds), Multivariate Environmental Statistics. North Holland, Amsterdam: 525–560.Google Scholar
  52. von Grafenstein, U., H. Erlenkeuser, J. MüUller & A. Kleinmann-Eisenmann, 1992. Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwiss. 79: 145–152.Google Scholar
  53. Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palæoclimatic changes. J. Paleolimnol. 13: 65–77.Google Scholar
  54. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991a. An assessment of Chironomidæ as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  55. Walker, I. R., R. J. Mott & J. P. Smol, 1991b. Alleröod-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  56. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1992. Aquatic invertebrates, climate, scale, and statistical hypothesis testing: a response to Hann, Warner, and Warwick. Can. J. Fish. aquat. Sci. 49: 1276–1280.Google Scholar
  57. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palæotemperature inference model for use with fossil midges from eastern Canada. J. Paleolimnol.Google Scholar
  58. Watson, R. T., M. C. Zinyowera, R. H. Moss & D. J. Dokken (eds), 1996. Climate change 1995 – impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, 879 pp.Google Scholar
  59. Webb, M. S., 1974. Surface temperatures of Lake Erie. Wat. Resour. Res. 10: 199–210.Google Scholar
  60. Weber, R. O., P. Talkner & G. Stefanicki, 1994. Asymmetric diurnal temperature change in the Alpine region. Geophys. Res. Lett. 21: 673–677.Google Scholar
  61. Weckströom, J., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in 30 subarctic Fennoscandian lakes. Arctic Alpine Res.Google Scholar
  62. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotellataxa (Bacillariophyceæ) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.Google Scholar
  63. Züullig, H., 1982. Untersuchungen üuber die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweiz. Z. Hydrol. 44: 1–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • David M. Livingstone
    • 1
  • André F. Lotter
    • 1
    • 2
  1. 1.Department of Environmental PhysicsSwiss Federal Institute of Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  2. 2.Geobotanical Institute, University of BerneBerneSwitzerland

Personalised recommendations