Landscape Ecology

, Volume 13, Issue 1, pp 15–25

Multiscale sources of variation in ecological variables: modeling spatial dispersion, elaborating sampling designs

  • Claude Bellehumeur
  • Pierre Legendre
Article

Abstract

Detection of structured spatial variation and identification of spatial scales are important aspects of ecological studies. Spatial structures can correspond to physical features of the environment or to intrinsic characteristics of ecological processes and phenomena. Spatial variability has been approached through several techniques such as classical analysis of variance, or the calculation of fractal dimensions, correlograms or variograms. Under certain assumptions, these techniques are all closely related to one another and represent equivalent tools to characterize spatial structures.

Our perception of ecological variables and processes depends on the scale at which variables are measured. We propose simple nested sampling designs enabling the detection of a wide range of spatial structures that show the relationships among nested spatial scales. When it is known that the phenomenon under study is structured as a nested series of spatial scales, this provides useful information to estimate suitable sampling intervals, which are essential to establish the relationships between spatial patterns and ecological phenomena. The use of nested sampling designs helps in choosing the most suitable solutions to reduce the amount of random variation resulting from a survey. These designs are obtained by increasing the sampling intensity to detect a wider spectrum of frequencies, or by revisiting the sampling technique to select more representative sampling units.

spatial pattern variogram correlogram fractal sampling design analysis of variance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellehumeur, C., P. Legendre and D. Marcotte. 1997. Variance and spatial scales in a tropical rain forest: changing the size of sampling units. Plant Ecology 130: 89–98.Google Scholar
  2. Bolviken, B., P.R. Stokke, J. Feder, T. Jossang. 1992. The fractal nature of geochemical landscapes. J. Geochem. Explor. 43: 91–109.Google Scholar
  3. Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1: 37–61.Google Scholar
  4. Burrough, P.A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 240–242.Google Scholar
  5. Burrough, P.A. 1987. Spatial aspects of ecological data. In Data Analysis in Community and Landscape Ecology. pp. 213–251. Edited by R.H.G. Jongman, C.J.F. ter Braak and O.F.R. van Tongeren. Pudoc, Wageningen.Google Scholar
  6. Carr, J.R. and W.B. Benzer. 1991. On the practice of estimating fractal dimension. Math. Geol. 23: 945–958.Google Scholar
  7. Cliff, A.D. and J.K. Ord. 1981. Spatial processes: models and applications. Pion, London.Google Scholar
  8. Cressie, N.A.C. 1991. Statistics for spatial data. JohnWiley & Sons, New York.Google Scholar
  9. David, M. 1977. Geostatistical ore reserve estimation. Elsevier, Amsterdam.Google Scholar
  10. Dutilleul, P. 1993. Spatial heterogeneity and the design of ecological field experiments. Ecology 74: 1646–1658.Google Scholar
  11. Dutilleul, P. and P. Legendre. 1993. Spatial heterogeneity against heterocedasticity: an ecological paradigm versus a statistical concept. Oikos 66: 152–171.Google Scholar
  12. Fortin, M.-J., P. Drapeau and P. Legendre. 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209–222.Google Scholar
  13. Gardner, R.H. 1997. Pattern, process and the analysis of spatial scales. In Ecological Scale: Theory and Applications. Edited by D.L. Peterson and V.T. Parker. Columbia University Press, New York.Google Scholar
  14. Garrett, R.G. 1983. Sampling methodology. In Handbook of Exploration Geochemistry. Vol. 2. pp. 83–110. Edited by R.J. Howarth. Elsevier, Amsterdam.Google Scholar
  15. Geary, R.C. 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115–145.Google Scholar
  16. Gower, J.C. 1962. Variance component estimation for unbalanced hierarchical classification. Biometrics 18: 537–542.Google Scholar
  17. Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. New Series 16: 293–316.Google Scholar
  18. He, F., P. Legendre, C. Bellehumeur, J.V. LaFrankie. 1994. Diversity pattern and spatial scale: a study of a tropical rain forest of Malaysia. Environmental and Ecological Statistics 1: 265–286.Google Scholar
  19. He, F., P. Legendre and J.V. LaFrankie. 1996. Spatial pattern of diversity in a tropical rain forest of Malaysia. Journal of Biogeography 23: 57–74.Google Scholar
  20. He, F., P. Legendre and J.V. LaFrankie. 1997. Distribution patterns of tree species in a Malaysian tropical rain forest. J. Veget. Sci. 8: 105–114.Google Scholar
  21. Hewitt, J.E., P. Legendre, B.H. McArdle, S.F. Thrush, C. Bellehumeur and S.M. Lawrie. 1997. Identifying relationships between adult and juvenile bivalves at different spatial scales. J. Exp. Mar. Biol. Ecol. (in press).Google Scholar
  22. Journel, A.G. and Ch.J. Huijbregts. 1978. Mining geostatistics. Academic Press, London.Google Scholar
  23. Kochummen, K. M., J.V. LaFrankie and N. Manokaran. 1991. Floristic composition of Pasoh forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science 3: 1–13.Google Scholar
  24. Legendre, P. and M.-J. Fortin. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.Google Scholar
  25. Levin, S.A. 1992. The problem of pattern and scales in ecology. Ecology 73: 1943–1967.Google Scholar
  26. Lewis, W.M., Jr. 1978. Comparison of temporal and spatial variation in the zooplancton of a lake by means of variance components. Ecology 59: 666–671.Google Scholar
  27. Ludwig, J.A. and D.W. Goodall. 1978. A comparison of paired-with blocked-quadrat variance methods for the analysis of spatial pattern. Vegetatio 38: 49–59.Google Scholar
  28. Mandelbrot, B.B. 1983. The fractal geometry of nature. Freeman, San Francisco.Google Scholar
  29. Matheron, G. 1965. Les variables régionalisées et leur estimation; une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris.Google Scholar
  30. Miesch, A.T. 1975. Variograms and variance components in geochemistry and ore evaluation. Geological Society of America, Memoirs, 142: 333–340.Google Scholar
  31. Milne, B.T. 1991. Heterogeneity as a multiscale characteristic of landscapes. In Ecological Heterogeneity. pp. 69–84. Edited by J. Kolasa and S.T.A. Pickett. Springer-Verlag, New York.Google Scholar
  32. Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.Google Scholar
  33. Nortcliff, S. 1978. Soil variability and reconnaissance soil mapping: a statistical study in Norfolk. J. Soil Sci. 29: 403–418.Google Scholar
  34. Oliver, M.A. and R. Webster. 1986. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Analysis 18: 227–242.Google Scholar
  35. Palmer, M.W. 1988. Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75: 91–102.Google Scholar
  36. Pinel-Alloul, B., J.A. Downing, M. Pérusse and G. Codin-Blumer. 1988. Spatial heterogeneity in freshwater zooplankton: variation with body size, depth, and scale. Ecology 69: 1393–1400.Google Scholar
  37. Platt, T. and C. Filion. 1973. Spatial variability of the productivity: biomass ratio for phytoplankton in small marine basin. Limnol. Oceanogr. 18: 743–749.Google Scholar
  38. Renshaw, E. and E.D. Ford. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.Google Scholar
  39. Rossi, R.E., D.J. Mulla, A.G. Journel and E.H. Franz. 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62: 277–314.Google Scholar
  40. Shaw, R.G. and T. Mitchell-Olds. 1993. Anova for unbalanced data: an overview. Ecology 74: 1638–1645.Google Scholar
  41. Sokal, R.R. and N.L. Oden. 1978a. Spatial autocorrelation in biology, 1. Methodology. Biological Journal of the Linnean Society 10: 199–228.Google Scholar
  42. Sokal, R.R. and N.L. Oden. 1978b. Spatial autocorrelation in biology, 2. Some biological implications and four applications of evolutionary and ecological interest. Biological Journal of the Linnean Society 10: 229–249.Google Scholar
  43. Sokal, R.R. and F.J. Rohlf. 1995. Biometry, 3rd ed. W.H. Freeman and Co., San Francisco.Google Scholar
  44. Troussellier, M., A. Maul and B. Baleux. 1989. Stratégies d'échantillonnage. In Microorganismes dans les Écosystèmes Océaniques. pp. 27–62. Edited by M. Bianchi, D. Marty, J.-C. Bertrand, P. Caumette and M. Gauthier. Masson, Paris.Google Scholar
  45. Ver Hoef, J.M, N.A.C. Cressie and D.C. Glenn-Lewin. 1993. Spatial models for spatial statistics: some unification. J. Veg. Sci. 4: 441–452.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Claude Bellehumeur
    • 1
  • Pierre Legendre
    • 1
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréal (Canada

Personalised recommendations