Journal of Theoretical Probability

, Volume 13, Issue 2, pp 357–382 | Cite as

Estimates for the Small Ball Probabilities of the Fractional Brownian Sheet

  • Thomas Dunker


We obtain some new estimates for the small ball behavior of the d-dimensional fractional Brownian sheet under Hölder and Orlicz norms. For d=2, these bounds are sharp for the Orlicz and the sup-norm. In addition, we give bounds for the Kolmogorov and entropy numbers of some operators satisfying an L2-Hölder-type condition.

Gaussian field small ball probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bass, R. F. (1988). Probability estimates for multiparameters Brownian processes. Anal. Prob. 16, 251-264.Google Scholar
  2. 2.
    Carl, B., Heinrich, S., and Kühn, T. (1988). s-numbers of integral operators with Hölder continuous kernels over metric compacta. J. Funct. Anal. 81, 54-73.Google Scholar
  3. 3.
    Carl, B., Kyrezi, I., and Pajor, A. (1997). Metric entropy of convex hulls in Banach spaces. Preprint.Google Scholar
  4. 4.
    Ciesielski, Z., Kerkyacharian, G., and Roynette, B. (1993). Quelques espace fonctionnel associé á des processus Gaussiens. Stud. Math. 107, 171-204.Google Scholar
  5. 5.
    Csá i, E. (1982). On small values of the square integral of a multiparameter Wiener process. Proc. Third Pannonian Symp. on Math. Stat., Hungary, Statistics and Probability, pp. 19-26.Google Scholar
  6. 6.
    Decreusefond, L., and Üstünel, A. S. (1997). Stochastic analysis of the fractional Brownian motion. Preprint.Google Scholar
  7. 7.
    Dunker, T., Kühn, T., Lifshits, M., and Linde, W. (1997). Metric entropy of integration operators and small ball probabilities for the Brownian sheet. Preprint.Google Scholar
  8. 8.
    Kuelbs, J. and Li, W. V. (1983). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116, 133-157.Google Scholar
  9. 9.
    Li, W. V., and Linde, W. (1998). A note on approximation, metric entropy and small ball estimates for Gaussian measures. Preprint.Google Scholar
  10. 10.
    Lifshits, M. A., and Tsirelson, B.S. (1986). Small ball deviations of Gaussian fields. Th. Prob. Appl. 31, 557-558.Google Scholar
  11. 11.
    Pajor, A., and Tomczak-Jaegermann, N. (1986). Subspaces of small codimension of finite dimensional Banach spaces. Proc. Amer. Math. Soc. 97 637-642.Google Scholar
  12. 12.
    Pisier, G. (1989). The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press.Google Scholar
  13. 13.
    Révész, P. (1981). How small are the increments of a Wiener sheet. In The 1st Pannonian Symp. on Math. Stat., Bad Tatzmannsdorf, 1979, Lecture Notes in Statistics 8, 206-219.Google Scholar
  14. 14.
    Singer, P. (1994). An integrate fractional Fourier transform. J. Comp. Appl. Math. 54, 221-237.Google Scholar
  15. 15.
    Stolz, W. (1996). Some small ball probabilities for Gaussian processes under nonuniform norms. J. Th. Prob. 9, 613-630.Google Scholar
  16. 16.
    Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Prob. 22, 1331-1354.Google Scholar
  17. 17.
    Temlyakov, V. N. (1990). Estimates of asymptotic characteristics of classes of functions with bounded mixed derivative and difference. Proc. Steklov Inst. Math. 189, 161-197.Google Scholar
  18. 18.
    Temlyakov, V. N. (1993). Approximation of Periodic Functions, Nova Science.Google Scholar
  19. 19.
    Temlyakov, V. N. (1995). An inequality for trigonometric polynomials and its application for estimating the entropy numbers. J. Complexity 11, 293-307.Google Scholar
  20. 20.
    Triebel, H. (1983). Theory of Function Spaces, Birkhäuser.Google Scholar
  21. 21.
    Triebel, H. (1995). Interpolation Theory, Function Spaces, Differential Operators, Barth Verlag, second edition.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Thomas Dunker
    • 1
  1. 1.Institut für StochastikFriedrich Schiller UniversitätJenaGermany

Personalised recommendations