Journal of Oceanography

, Volume 55, Issue 5, pp 635–642 | Cite as

Microbial Diversity in Nankai Trough Sediments at a Depth of 3,843 m

  • Lina Li
  • Jean Guenzennec
  • Peter Nichols
  • Pierre Henry
  • Miki Yanagibayashi
  • Chiaki Kato
Article

Abstract

Dense populations of bivalves, primarily Calyptogena sp., were observed at cold seeps of the Nankai Trough. Bacterial input to the sediment was estimated through determination of phospholipid ester-linked fatty acid (PLFA) and DNA profiles. Results indicated a bacterial biomass of 109 cells (g dry wt)-1 while individual fatty acid profiles revealed a predominance of monounsaturated fatty acids, mainly 18:1 isomers. The presence of these fatty acids can be interpreted to reflect a response to low temperature and a predominance of psychrophilic bacteria. DNA fragments encoding bacterial ribosomal RNA small-subunit sequences (16S rDNA) were amplified by the polymerase chain reaction method using DNA extracted directly from the sediment samples. From the sequencing results, at least 19 kinds of bacterial 16S rDNAs related to mostly the Proteobacteria and a few gram-positive bacteria were identified. These results suggest that the bacterial community in the Nankai Trough sediments consists of mainly bacteria belonging to the Proteobacteria γ, ε, and δ subdivisions. Bacteria belonging to the ε and δ subdivisions, which are known to include epibiont and sulfate reducing bacteria, respectively, were mostly detected in the sediment obtained from inside the area of the Calyptogena community, and the δ-Proteobacteria may function to supply reduced sulfur to bacterial endosymbionts of Calyptogena.

Deep-sea microbial diversity cold seep Nankai Trough Calyptogena 16S ribosomal RNA gene PLFA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashi, J. (1997): Distribution of cold seepage at the fault scarp of the eastern Nankai accretionary prism. JAMSTEC J. Deep Sea Res., 13, 495–501.Google Scholar
  2. Balkwill, D. L., F. R. Leach, J. T. Wilson, J. F. McNabb and D. C. White (1988): Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface sediments. Microb. Ecol., 16, 73–84.Google Scholar
  3. Ben-Mlih, F., J.-C. Marty and A. Fiala-Medioni (1992): Fatty acid composition in deep-sea hydrothermal vent symbiotic bivalves. J. Lipid Res., 33, 1797–1806.Google Scholar
  4. Bligh, E. G. and W. J. Dyer (1959): A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917.Google Scholar
  5. Boon, J. J., J. W. De Leeuw, G. J. Van Der Hoek and J. H. Vosjan (1977): Significance and taxonomic value of iso and anteiso monoenoïic fatty acids and branched beta hydroxy fatty acids in Desulfovibrio desulfuricans. J. Bacteriol., 129, 1183–1191.Google Scholar
  6. Bowman, J. P., J. Cavanagh, J. J. Austin and K. Sanderson (1996): Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol., 46, 841–848.Google Scholar
  7. DeLong, E. F. (1992): Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA, 89, 5685–5689.Google Scholar
  8. Distel, D. L., D. J. Lane, G. J. Olsen, S. J. Giovannoni, B. Pace, N. R. Pace, D. A. Stahl and H. Felbeck (1988): Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol., 170, 2506–2510.Google Scholar
  9. Dowling, N. J. E., J. G. Guezennec and D. C. White (1988): Methods for insight into mechanisms of microbially influenced metal corrosion. p. 404–410. In Biodeterioration, ed. by D. R. Hougton, R. T. Smith and H. O. U. Eggins, Elsevier Applied Science Publ., London.Google Scholar
  10. Gamo, T., J. Ishibashi, K. Shitashima, T. Nakatsuka, U. Tsunogai, T. Masuzawa, H. Sakai and K. Mitsuzawa (1994): Chemical characteristics of cold seepage at the eastern Nankai Trough accretionary prism (KAIKO-TOKAI Program): a preliminary report of the dive 113 of “Shinkai 6500”. JAMSTEC J. Deep Sea Res., 10, 343–352.Google Scholar
  11. Gill, C. O. (1975): Effect of growth temperature on the lipids of Pseudomonas fluorescens. J. Gen. Microbiol., 89, 293–298.Google Scholar
  12. Guckert, J. B., C. P. Anthworth, P. D. Nichols and D. C. White (1985): Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol., 31, 147–158.Google Scholar
  13. Guezennec, J. G. (1991): Influence of cathodic protection of mild steel on the growth of sulphate-reducing bacteria at 35°C in marine sediments. Biofouling, 3, 339–348.Google Scholar
  14. Haddad, A., F. Camacho, P. Durand and S. C. Cary (1995): Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl. Environ. Microbiol., 61, 1679–1687.Google Scholar
  15. Henderson, R. J., R. M. Millar, J. R. Sargent and J. P. Jostensen (1993): Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions. Lipids, 28, 389–396.Google Scholar
  16. Kato, C., L. Li, J. Tamaoka and K. Horikoshi (1997): Molecular analyses of the sediment of the 11000m deep Mariana Trench. Extremophiles, 1, 117–123.Google Scholar
  17. Keweloh, H. and H. J. Heipieper (1996): Trans unsaturated fatty acids in bacteria. Lipids, 31, 129–137.Google Scholar
  18. Le Chevalier, M. P. (1977): Lipids in bacterial taxonomy—A taxonomist's view. Crit. Rev. Microbiol., 7, 109–210.Google Scholar
  19. Le Pichon, X., T. Liyama, J. Boulegue, J. Charvet, M. Faure, K. Kano, S. Lallemant, H. Okada, C. Rangin, A. Taira, T. Urabe and S. Uyeda (1987): Nankai Trough and Zenisu Ridge: A deep-sea submersible survey. Earth Planet Sci. Lett., 83, 285–299.Google Scholar
  20. Le Pichon, X. and Kaiko-Nankai Scientific Crew (1992): Fluid venting activity within the eastern Nankai Trough accretionary wedge: A summary of the 1989 Kaiko-Nankai results. Earth Planet Sci. Lett., 109, 303–318.Google Scholar
  21. Marr, A. G. and J. L. Ingraham (1962): Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol., 84, 1260–1267.Google Scholar
  22. Masuzawa, T., N. Handa, H. Kitagawa and M. Kusakabe (1992): Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima Island, SagamiBay, Japan. Earth Planet Sci. Lett., 110, 39–50.Google Scholar
  23. Naganuma, T., C. Kato, H. Hirayama, N. Moriyama, J. Hashimoto and K. Horikoshi (1997): Intracellular occurrence of ɛ-Proteobacterial 16S rDNA sequences in the Vestimentiferan trophosome. J. Oceanogr, 53, 193–197.Google Scholar
  24. Saitou, N. and M. Nei (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.Google Scholar
  25. Sambrook, J., E. F. Fritsch and T. Maniatis (1989): Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.Google Scholar
  26. Suzuki, M. T., M. S. Rappe, Z. W. Haimberger, H. Winfield, N. Adair, J. Strobel and S. J. Giovannoni (1997): Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol., 63, 983–989.Google Scholar
  27. Vincent, P., P. Pignet, F. Talmont, L. Bozzi, B. Fournet, J. Guezennec, C. Jeanthon and D. Prieur (1994): Production and characterization of an exopolysaccharide excreted by a deepsea hydrothermal vent bacterium isolated from the polychaete Alvinella pompejana. Appl. Environ. Microbiol., 60, 4134–4141.Google Scholar
  28. Ward, D. M., M. M. Bateson, R. Weller and A. L. Ruff-Roberts (1992): Ribosomal RNA analysis for microorganisms as they occur in nature. Adv. Microbiol. Ecol., 12, 219–286.Google Scholar
  29. White, D. C. (1988): Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Adv Limnol., 31, 1–18.Google Scholar
  30. White, D. C., W. M. Davis, J. S. Nickels, J. D. King and R. J. Bobbie (1979): Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oceologia, 40, 51–62.Google Scholar

Copyright information

© The Oceanographic Society of Japan 1999

Authors and Affiliations

  • Lina Li
    • 1
  • Jean Guenzennec
    • 2
  • Peter Nichols
    • 3
  • Pierre Henry
    • 4
  • Miki Yanagibayashi
    • 1
  • Chiaki Kato
    • 1
  1. 1.Japan Marine Science and Technology Center (JAMSTEC)The DEEPSTAR GroupYokosukaJapan
  2. 2.Dept DRV/VP/BMHIFREMERPlouzaneFrance
  3. 3.Division of Marine ResearchCSIROHobartAustralia
  4. 4.ENS, LabParis Cedex 05France

Personalised recommendations