Journal of Superconductivity

, Volume 14, Issue 1, pp 115–125 | Cite as

Band-Pass Filters for 1.8 GHz Frequency Range Using Double-Sided YBCO/Au Films on CeO2-Buffered Sapphire

  • V. F. Tarasov
  • I. V. Korotash
  • V. F. Taborov
  • C. G. Tretiatchenko
  • V. V. Vysotskii
  • V. M. Pan
  • A. N. Ivanyuta
  • G. A. Melkov
  • M. Lorenz

Abstract

Microstrip band-pass filters for the frequency range of 1.8 GHz were manufactured using double-sided YBa2Cu3O7−δ (YBCO) films on CeO2-buffered 2-in. sapphire wafers. Their S-parameters were measured. To protect YBCO films against degradation in air, they were coated with gold. Microwave surface resistance Rs(T) was measured by the copper end-plate and microstrip resonator techniques. The Au coating was proven to suppress Q-factor of resonators and to drastically increase the insertion losses of filters. A significant peak of Rs(dAu) for 77 K at dAu ≈ 20 nm was experimentally observed. The peak is much higher and occurs at much lower dAu values than what is predicted by a simple electrodynamic calculation for the bilayer film. We suggest that this is due to a surface roughness, which was observed by atomic force microscopy. A dynamic proximity effect with an account of Andreev reflection may be also important to understand the obtained results.

Andreev reflection atomic force microscopy high-temperature superconducting films insertion losses interface phenomena microstrip band-pass filter normal metal coating proximity effect surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Z.-Y. Shen, High-Temperature Superconducting Microwave Circuits (Artech House, Boston, 1994).Google Scholar
  2. 2.
    J. Browne, Microwave & RF 32, 123 (1993).Google Scholar
  3. 3.
    N. Newman and W. G. Lyons, J. Supercond. 6, 119 (1993).Google Scholar
  4. 4.
    J.-S. Hong, M. J. Lancaster, R. B. Greed, D. Voyce, D. Jedamzik, J. A. Holland, H. J. Chaloupka, and J.-C. Mage, IEEE Trans. Appl. Supercond. 9, 3893 (1999).Google Scholar
  5. 5.
    M. Lorenz, H. Hochmuth, D. Natusch, H. Boerner, T. Thaerigen, D. D. Patrikarakos, J. Frey, K. Kreher, S. Senz, G. Kaestner, D. Hesse, M. Steins, and W. Schmitz, IEEE Trans. Appl. Supercond. 7, 1240 (1997).Google Scholar
  6. 6.
    A. G. Zaitsev, R. Schneider, J. Greek, G. Linker, F. Ratzel, and R. Smithey, Appl. Phys. Lett. 75, 4165 (1999).Google Scholar
  7. 7.
    I. B. Vendik, M. N. Gubina, A. N. Deleniv, and D. B. Kholodnyak, Zh. Tech. Fiz. 67, 83 (1997).Google Scholar
  8. 8.
    V. M. Pan, V. F. Tarasov, A. G. Popov, V. V. Vysotskii, M. Lorenz, A. N. Ivanyuta, and G. A. Melkov, Physica B 284-288, 915 (2000).Google Scholar
  9. 9.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987) (in Russian).Google Scholar
  10. 10.
    N. Terada, S. Kashivaya, H. Takashima, S. Ueno, M. Koyanagi, and H. Ihara, IEEE Trans. Appl. Supercond. 9, 1704 (1999).Google Scholar
  11. 11.
    A. F. Andreev, J. Exp. Theor. Phys. 46, 1823 (1964); 47 2222 (1964) (in Russian).Google Scholar
  12. 12.
    F. F. Mende and A. I. Spitsin, Surface Impedance of Superconductors (Naukova Dumka, Kiev, 1985) (in Russian).Google Scholar
  13. 13.
    A. G. Zaitsev, R. Woerdenweber, T. Koenigs, E. K. Hollmann, S. V. Rasumov, and O. G. Vendik, Physica C 264, 125 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • V. F. Tarasov
    • 1
  • I. V. Korotash
    • 1
  • V. F. Taborov
    • 1
  • C. G. Tretiatchenko
    • 1
  • V. V. Vysotskii
    • 1
  • V. M. Pan
    • 1
  • A. N. Ivanyuta
    • 2
  • G. A. Melkov
    • 2
  • M. Lorenz
    • 3
  1. 1.Department of SuperconductivityInstitute for Metal PhysicsKyivUkraine
  2. 2.Department of Cryo- and MicroelectronicsT. Shevchenko National UniversityKyivUkraine
  3. 3.Institute for Experimental Physics IIUniversity of LeipzigLeipzigGermany

Personalised recommendations