Journal of Insect Behavior

, Volume 13, Issue 6, pp 915–926 | Cite as

Antipredatory Activity of the Weevil Oxyops vitiosa: A Biological Control Agent of Melaleuca quinquenervia

  • B. R. Montgomery
  • G. S. Wheeler


The larvae of the leaf-feeding weevil Oxyops vitiosa, a biological control agent of Melaleuca quinquenervia, are covered with a viscous orange coating that is thought to protect against generalist predators. This coating is gradually lost as the larvae drop to the ground and pupate in subterranean pupal cells. To test the antipredator activity of this species, four immature life stages (early instars, late instars, prepupae, pupae) were exposed to a common generalist predator, the red imported fire ant Solenopsis invicta. Choice tests were conducted by placing an O. vitiosa individual and a control larva of the weevil Neochetina eichhorniae into an arena containing a S. invicta colony and observing subsequent ant behaviors. S. invicta workers contacted O. vitiosa early instars, late instars, and prepupae less frequently than control N. eichhorniae larvae, and upon contact S. invicta was less likely to behave aggressively toward these O. vitiosa life stages than toward N. eichhorniae larvae. However, S. invicta contacted, attacked, and consumed naked (nonencased) O. vitiosa pupae and N. eichhorniae larvae with equal frequency. Encased O. vitiosa pupae buried in sand were not attacked compared to susceptible encased pupae on the sand surface. By shifting from a chemical defense during the larval stages to a physical defense during the pupal stage, O. vitiosa reduces the risk of attack by this generalist predator.

Oxyops vitiosa Melaleuca quinquenervia Solenopsis invicta predation chemical defense Curculionida Myrtaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balciunas, J. K., Burrows, D. W., and Purcell, M. F. (1994). Field and laboratory host ranges of the Australian weevil, Oxyops vitiosa (Coleoptera: Curculionidae), a potential biological control agent for the paperbark tree, Melaleuca quinquenervia. Biol. Control 4: 351-360.Google Scholar
  2. Blum, M. S. (1981). Arthropod Defenses, Academic Press, New York.Google Scholar
  3. Brophy, J. J., Boland, D. J., and Lassak, E. V. (1989). Leaf essential oils of Melaleuca and Leptospermum species from tropical Australia. In Boland, D. J. (ed.), Trees for the Tropics, Growing Australian Multipurpose Trees and Shrubs in Developing Countries, Sinauer Associates, Sunderland, MA, pp. 193-203.Google Scholar
  4. Crawley, M. J. (1989). The successes and failures of weed biocontrol using insects. Biocontrol News Inform. 19: 213-223.Google Scholar
  5. DeLoach, C. J., and Cordo, H. A. (1976). Life cycle and biology of Neochetina bruchi, a weevil attacking waterhyacinth in Argentina, with notes on N. eichhorniae. Ann. Entomol. Soc. Am. 69: 643-652.Google Scholar
  6. Eisner, T. (1994). Integumental slime and wax secretion: Defensive adaptations of sawfly larvae. J. Chem. Ecol. 20: 2743-2749.Google Scholar
  7. Goeden, R. D., and Louda, S. M. (1976). Biotic interference with insects imported for weed control.Annu. Rev. Entomol. 21: 325-342.Google Scholar
  8. Hölldobler, B., and Wilson, E. O. (1990). The Ants, Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  9. Julien, M. H., and Griffiths, M. W. (1998). Biological Control of Weeds, a World Catalogue of Agents and Their Target Weeds, Fourth CAB International, Oxon, UK.Google Scholar
  10. Lederhouse, R. C. (1990). Avoiding the hunt: Primary defenses of lepidopteran caterpillars. In Evans, D. L., and Schmidt, J.O. (eds.), Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators, State University of New York Press, Albany, pp. 175-189.Google Scholar
  11. Lofgren, C. S., Banks, W. A., and Glancey, B. M. (1975). Biology and control of imported fire ants. Annu. Rev. Entomol. 20: 1-30.Google Scholar
  12. Montllor, C. B., Bernays, E. A., and Cornelius, M. L. (1991). Responses of two hymenopteran predators to surface chemistry of their prey: Significance for an alkaloid-sequestering caterpillar. J. Chem. Ecol. 17: 391-399.Google Scholar
  13. Pavis, C., Malosse, C., Ducrot, P. H., Howse, F., Jaffe, K., and Descoins, C. (1992). Defensive secretion of first-instar larvae of rootstalk borer weevil, Diaprepes abbreviatus L. (Coleoptera: Curculionidae), to the fire-ant Solenopsis geminata (F.) (Hymenoptera: Formicidae). J. Chem. Ecol. 18: 2055-2068.Google Scholar
  14. Purcell, M. F., and Balciunas, J. K. (1994). Life history and distribution of the Australian weevil Oxyops vitiosa (Coleoptera: Curculionidae), a potential biological control agent for Melaleuca quinquenervia (Myrtaceae).Ann. Entomol. Soc. Am. 87: 867-873.Google Scholar
  15. Ramanoelina, P. A. R., Viano, J., Bianchini, J. P., and Gaydou, E. M. (1994). Occurrence of various chemotypes in Niaouli (Melaleuca quinquenervia) essential oils from Madagascar using multivariate statistical analysis. J. Agr. Food Chem. 42: 1177-1182Google Scholar
  16. SigmaStat (1995). Jandel Scientific Software, Version 2.0.Google Scholar
  17. Vander Meer, R. K. (1983). Semiochemicals and the red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae). Fla. Entomol. 66: 139-161.Google Scholar
  18. Whitman, D. W., Blum, M. S., and Alsop, D. W. (1990). Allomones: Chemicals for defense. In Evans, D. L., and Schmidt, J.O. (eds.), Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators, State University of New York, Albany, pp. 289-351.Google Scholar
  19. Witz, B. W. (1990). Antipredator mechanisms in arthropods: A twenty year literature survey. Fla. Entomol. 73: 71-99.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • B. R. Montgomery
    • 1
  • G. S. Wheeler
    • 2
  1. 1.AmeriCorps/Student Conservation AssociationMystic
  2. 2.Aquatic Weed Research UnitUSDA/ARSFt. Lauderdale

Personalised recommendations