Journal of Insect Behavior

, Volume 13, Issue 6, pp 851–864

Nutrient-Specific Learning in an Omnivorous Insect: The American Cockroach Periplaneta americana L. Learns to Associate Dietary Protein with the Odors Citral and Carvone

  • Christopher A. Gadd
  • David Raubenheimer
Article

Abstract

Experiments were performed to test for nutrient-specific olfactory learning in the American cockroach, Periplaneta americana L. In a conditioning period, cockroaches were presented with two complementary foods, one of which contained protein and the other carbohydrate, this combination allowing them to select a nutritionally balanced diet. The foods were separated in space, and each was paired with one of two odors, citral or carvone. The cockroaches were then selectively deprived of one of the nutrients for 24 or 48 h. In the final (test) phase of the experiment the movement of the cockroaches toward the nutrient-associated odors was monitored. Associative learning was demonstrated with respect to protein, with protein-deprived cockroaches moving more frequently toward the protein-associated odor. No learned associations between carbohydrate and odor were demonstrated. These data are contrasted with similar experiments on an herbivorous insect, the locust Locusta migratoria.

American cockroach Periplaneta americana L. associative learning nutritional regulation protein intake learned hunger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abisgold, J. D., and Simpson, S. J. (1988). The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. J. Exp. Biol 135: 215-229.Google Scholar
  2. Baker, B. J., Booth, D. A., Duggan, J. P., and Gibson, E. L. (1987). Protein appetite demonstrated: Learned specificity of protein-cue preference need in adult rats. Nutr. Res. 7: 481-487.Google Scholar
  3. Beckers, R., Lachaud, J. P., and Fresneau, D. (1994). The influence of olfactory conditioning on food preferences in the ant Lasius niger (L.). Ethol. Ecol. Evol. 6: 159-167.Google Scholar
  4. Bernays, E. A., and Chapman, R. F. (1994). Host-Plant Selection by Phytophagous Insects, Chapman & Hall, New York.Google Scholar
  5. Bernays, E. A., and Raubenheimer, D. (1991). Dietary mixing in grasshoppers: Changes in acceptability of different plant secondary compounds associated with low levels of dietary protein (Orthoptera: Acrididae). J. Insect Behav. 4: 545-556.Google Scholar
  6. Berteaux, D., Crete, M., Huot, J., Maltais, J., and Ouellet, J.-P. (1998). Food choice by white-tailed deer in relation to protein and energy content of the diet: A field experiment. Oecologia 115: 84-92.Google Scholar
  7. Berthoud, H.-R., and Seeley, R. J. (eds.) (1999). Neural Control of Macronutrient Selection,CRC Press, Boca Raton, FL.Google Scholar
  8. Boeckh, J., and Ernst, K. D. (1987). Contribution of single unit analysis in insects to an understanding of olfactory function. J. Comp. Physiol. A 161: 549-565.Google Scholar
  9. Booth, D. A., and Baker, B. J. (1990). dl-Fenfluramine challenge to nutrient-specific textural preference conditioned by concurrent presentation of two diets. Behav. Neurosci. 104: 226-229.Google Scholar
  10. Bowdish, T. I., and Bultman, T. L. (1993). Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midland Nat. 129: 215-222.Google Scholar
  11. Clarebrough, C., Mira, A., and Raubenheimer, D. (2000). Sex-specific differences in nitrogen intake and investment by feral and laboratory-cultured cockroaches. J. Insect Physiol. 46: 677-684.Google Scholar
  12. Cochran, D. G. (1985). Nitrogen excretion in cockroaches. Annu. Rev. Entomol. 30: 29-49.Google Scholar
  13. Cohen, R.W., Heydon, S. L., Waldbauer, G. P., and Friedman, S. (1987). Nutrient self-selection by the omnivorous cockroach Supella longipalpa. J. Insect Physiol. 33: 77-82.Google Scholar
  14. Corrigan, J. J., and Kearns, C. W. (1963). Amino acid metabolism in DDT-poisoned American cockroaches. J. Insect Physiol. 9: 1-12.Google Scholar
  15. Dukas, R. (1995). Transfer and interference in bumblebee learning. Anim. Behav. 49: 1481-1490.Google Scholar
  16. Geissler, T. G., and Rollo, C. D. (1987). The influence of nutritional history on the response to novel food by the cockroach Periplaneta americana (L.). Anim. Behav. 35: 1905-1907.Google Scholar
  17. Gould, J. L. (1993). Ethological and comparative perspectives on honey bee learning. In Papaj, D. R., and Lewis, A. C. (eds.), Insect Learning, Chapman & Hall, New York, pp. 18-50.Google Scholar
  18. Gould, J. L., and Marler, P. (1987). Learning by instinct. Sci. Am. 256: 62-73.Google Scholar
  19. Gould, J. L., and Towne, W. F. (1988). Honey bee learning. Adv. Insect Physiol. 20: 55-86.Google Scholar
  20. Guthrie, D. M., and Tindall, A. R. (1968). The Biology of the Cockroach, Edward Arnold, London.Google Scholar
  21. Hammer, M., and Menzel, R. (1995). Learning and memory in the honeybee. J. Neurosci. 15: 1617-1630.Google Scholar
  22. Healy, S. (1992). Optimal memory: Toward an evolutionary ecology of animal cognition. Trends Ecol. Evol. 7: 399-400.Google Scholar
  23. Hoffmann, A. A. (1985). Effects of experience on oviposition and attraction in Drosophila: Comparing apples and oranges. Am. Nat. 126: 41-51.Google Scholar
  24. Jermy, T. (1987).The role of experience in the host selection of phytophagous insects. In Chapman, R. F., Bernays, E. A., and Stoffonalo, J. G. (eds.), Perspectives in Chemoreception and Behavior, Springer-Verlag, New York, pp. 143-157.Google Scholar
  25. Johnson, R. A. (1991). Learning, memory and foraging efficiency in two species of desert seedharvesterants. Ecology 72: 1408-1419.Google Scholar
  26. Jones, S. A., and Raubenheimer, D. (1999). An integrated approach to baiting strategies for the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). In Robinson, W H., Rettich, F., and Rambo, G.W. (eds.), Proceedings of the Third International Conference on Urban Pests, Prague, pp. 133-140.Google Scholar
  27. Lee, J. C., and Bernays, E. A. (1990). Food tastes and toxic effects: Associative learning by the polyphagous grasshopper Schistocerca americana (Drury) (Orthoptera: Acrididae). Anim Behav. 39: 163-173.Google Scholar
  28. McAllan, J. W., and Chefuka, W. (1961). Some physiological aspects of glutamate-aspartate transamination in insects. Comp. Biochem. Physiol. 2: 290-299.Google Scholar
  29. Menzel, R. (1985). Learning in honey bees in an ecological and behavioral context. In Hölldobler, B., and Lindauer, M. (eds.), Experimental Behavioral Ecology and Sociobiology, Gustav Fischer Verlag, Stuttgart, New York, pp. 55-74.Google Scholar
  30. Menzel, R., Greggers, U., and Hammer, M. (1993). Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In Papaj, D. R., and Lewis, A. C (eds.), Insect Learning, Chapman & Hall, New York, pp. 18-50.Google Scholar
  31. Mira, A. (1999). Nutritional and Evolutionary Studies of the Host-Endosymbiont Relationship in the Blattodea, D.Phil thesis, University of Oxford, Oxford.Google Scholar
  32. Mullins, D. E., and Cochran, D. G. (1974). Nitrogen metabolism in the American cockroach: An examination of whole body and fat body regulation of cations in response to nitrogen balance. J. Exp. Biol. 61: 557-570.Google Scholar
  33. Mullins, D. E., and Cochran, D. G. (1975a). Nitrogen metabolism in the American cockroach I. An examination of positive nitrogen balance with respect to uric acid stores. Comp Biochem. Physiol. A 50: 489-500.Google Scholar
  34. Mullins, D. E., and Cochran, D. G. (1975b). Nitrogen metabolism in the American cockroach II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp. Biochem. Physiol. A 50: 501-510.Google Scholar
  35. Mullins, D. E., and Cochran, D. G. (1987). Nutritional ecology of cockroaches. In Slansky, F., and Rodriguez, J. G. (eds.), Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrates,Wiley, New York, pp. 885-902.Google Scholar
  36. Papaj, D. R., and Prokopy, R. J. (1989). Ecological and evolutionary aspects of learning in phytophagous insects. Annu. Rev. Entomol. 34: 315-350.Google Scholar
  37. Papaj, D. R., Snellen, H., Swanns, K., and Vet, L. E. M. (1994). Unrewarding experiences and their effect on the foraging in the parasitic wasp Leptopilina heterotoma (Hymenoptera: Eucoilidae). J. Insect Behav. 7: 465-481.Google Scholar
  38. Prokopy, R. J., Cooley, S. S., and Papaj, D. R. (1992). How well can relative specialist Rhagoletis flies learn to discriminate fruit for oviposition? J. Insect Behav. 6: 167-176.Google Scholar
  39. Prokopy, R. J., Bergweiler, C., Galarza, L., and Schwerin, J. (1994). Prior experience affects the visual ability of Rhagoletis pomonella flies (Diptera: Tephritidae) to find host fruit. J. Insect Behav. 7: 663-677.Google Scholar
  40. Raubenheimer, D. (1992). Tannic acid, protein, and digestible carbohydrate: Dietary imbalance and nutritional compensation in locusts. Ecology 73: 1012-1027.Google Scholar
  41. Raubenheimer, D., and Blackshaw, J. (1994). Locusts learn to associate visual stimuli with drinking J. Insect Behav. 7: 569-575.Google Scholar
  42. Raubenheimer, D., and Simpson, S. J. (1993). The geometry of compensatory feeding in the locust. Anim. Behav. 45: 953-964.Google Scholar
  43. Raubenheimer, D., and Simpson, S. J. (1997). Integrative models of nutrient balancing: application to insects and vertebrates. Nutr. Res. Rev. 10: 151-179.Google Scholar
  44. Raubenheimer, D., and Tucker, D. (1997). Associative learning by locusts: Pairing of visual cues with the separate consumption of protein and carbohydrate. Anim. Behav. 54: 1449-1459.Google Scholar
  45. Rollo, C. D. (1984). Resource allocation and time budgeting in adults of the cockroach Periplaneta americana: The interaction of behaviour and metabolic reserves. Res. Pop. Ecol. 26: 150-187.Google Scholar
  46. Schal, C., Gautier, J. Y., and Bell, W. J. (1984). Behavioural ecology of cockroaches. Biol. Rev 59: 209-254.Google Scholar
  47. Sherry, D. F., Jacobs, L. F., and Gaulin, S. J.C. (1992). Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci. 15: 298-303.Google Scholar
  48. Simons, M. T. T. P., Suverkropp, B. P., Vet, L. E. M., and Demoed, G. (1992). Comparison of learning in related generalist and specialist eucoilid parasitoids. Entomol. Exp. Appl. 64: 117-124.Google Scholar
  49. Simpson, S. J., and Abisgold, J. D. (1985). Compensation by locusts for changes in dietary nutrients: Behavioural mechanisms. Physiol. Entomol. 10: 443-452.Google Scholar
  50. Simpson, S. J., and Raubenheimer, D. (1993). A multi-level analysis of feeding behaviour: The geometry of behavioural decisions. Philos. Trans. Roy. Soc. B 342: 381-402.Google Scholar
  51. Simpson, S. J., and White, P. R. (1990). Associative learning and locust feeding: Evidence for a 'learned hunger' for protein. Anim. Behav. 40: 506-513.Google Scholar
  52. Simpson, S. J., Simmonds, M. S. J., Blaney, W. M., and Jones, J. P. (1990). Compensatory dietary selection occurs in larval Locusta migratoria but not Spodoptera littoralis after a single deficient meal during ad libitum feeding. Physiol. Entomol. 15: 235-242.Google Scholar
  53. Stephens, D.W., and Krebs, J.R. (1986). Foraging Theory, Princeton University Press, Princeton, NJ.Google Scholar
  54. Traynier, R. M. M. (1984). Associative learning in the ovipositional behavior of the cabbage butterfly, Pieris rapae. Physiol. Entomol. 9: 465-472.Google Scholar
  55. Westoby, M. (1974). An analysis of diet selection by large generalist herbivores. Am. Nat. 108: 290-304.Google Scholar
  56. Wharton, D. R. A., Wharton, M. C., and Lola, J. E. (1965). Cellulase in the cockroach, with special reference to Periplaneta americana (L.). J. Insect Physiol. 11: 947-959.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Christopher A. Gadd
    • 1
    • 2
  • David Raubenheimer
    • 3
  1. 1.Department of ZoologyUniversity of OxfordOxfordEngland
  2. 2.Department of Anatomy and Developmental BiologyUniversity College LondonLondonEngland
  3. 3.Department of ZoologyUniversity of OxfordOxfordEngland

Personalised recommendations