Foundations of Physics Letters

, Volume 13, Issue 5, pp 401–425 | Cite as


  • M. Pauri
  • M. Vallisneri


In special relativity, the definition of coordinate systems adapted to generic accelerated observers is a long-standing problem, which has found unequivocal solutions only for the simplest motions. We show that the Märzke-Wheeler construction, an extension of the Einstein synchronization convention, produces accelerated systems of coordinates with desirable properties: (a) they reduce to Lorentz coordinates in a neighborhood of the observers' world-lines; (b) they index continuously and completely the causal envelope of the world-line (that is, the intersection of its causal past and its causal future: for well-behaved world-lines, the entire space-time). In particular, Märzke-Wheeler coordinates provide a smooth and consistent foliation of the causal envelope of any accelerated observer into space-like surfaces.

We compare the Märzke-Wheeler procedure with other definitions of accelerated coordinates; we examine it in the special case of stationary motions, and we provide explicit coordinate transformations for uniformly accelerated and uniformly rotating observers. Finally, we employ the notion of Märzke-Wheeler simultaneity to clarify the relativistic paradox of the twins, by pinpointing the local origin of differential aging.

special relativity coordinate systems accelerated observers simultaneity synchronization of clocks twin paradox 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  2. 2.
    C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, Singapore, 1985).zbMATHGoogle Scholar
  3. 3.
    M. Pauri and M. Vallisneri, “Classical roots of the Unruh and Hawking effects,” Found. Phys. 29 1499 (1999).MathSciNetCrossRefGoogle Scholar
  4. 4.
    W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D 14, 870 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    R. F. Märzke and J. A. Wheeler, “Gravitation as geometry-I: the geometry of space-time and the geometrodynamical standard meter,” in Gravitation and Relativity, H.-Y. Chiu and W. F. Hoffmann, eds. (Benjamin, New York, 1964, p. 40.Google Scholar
  6. 6.
    H. Reichenbach, Philosophy of Space and Time (Dover, New York, 1957).zbMATHGoogle Scholar
  7. 7.
    A. Grünbaum, Philosophical Problems of Space and Time, 2nd edn. (Reidel, Dordrecht, 1973).CrossRefGoogle Scholar
  8. 8.
    D. Malament, “Causal theories of time and the conventionality of simultaneity,” Noûs 11, 293 (1977).CrossRefGoogle Scholar
  9. 9.
    S. Sarkar and J. Stachel, “Did Malament prove the non-conventionality of simultaneity in the special theory of relativity?,” Phil. Sci. 66, 208 (1999).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Rynasiewicz, to appear in Proceedings, Philosophy of Science Association PSA 2000 Meeting (Vancouver).Google Scholar
  11. 11.
    L. Page, “A new relativity. I. Fundamental principles and transformations between accelerated systems,” Phys. Rev. 49, 254 (1936).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    H. E. Ives, “Extrapolation from the Michelson-Morley experiment,” J. Opt. Soc. Am. 40, 185 (1950).ADSCrossRefGoogle Scholar
  13. 13.
    G. J. Whitrow, The Natural Philosophy of Time (Nelson, London and Edinburgh, 1961).zbMATHGoogle Scholar
  14. 14.
    C. Kilmister and B. Tonkinson, “Pragmatic circles in relativistic time keeping,” in Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post, S. French and H. Kamminga, eds. (Kluwer Academic, Dordrecht, 1993). p. 207.CrossRefGoogle Scholar
  15. 15.
    R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).CrossRefzbMATHGoogle Scholar
  16. 16.
    J. L. Synge, “Timelike helices in flat spacetime,” Proc. Royal Irish Acad. 65A, 27 (1967).MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. R. Letaw, “Stationary world lines and the vacuum excitation of noninertial detectors,” Phys. Rev. D 23, 1709 (1981).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. R. Letaw and J. D. Pfautsch, “The stationary coordinate systems in flat spacetime,” J. Math. Phys. 23, 425 (1982).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    W. Rindler, “Kruskal space and the uniformly accelerated frame,” Am. J. Phys. 34, 1174 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).ADSCrossRefGoogle Scholar
  21. 21.
    H. Arzeliès, Relativistic Kinematics (Pergamon, Oxford, 1966).zbMATHGoogle Scholar
  22. 22.
    L. Marder, Time and the Spacetraveler (Allen & Unwin, London, 1971).Google Scholar
  23. 23.
    W. C. Salmon, Space, Time and Motion: A Philosophical Introduction (Dickenson, Encino, 1975).Google Scholar
  24. 24.
    M. Stautberg-Greenwood, “Use of Doppler-shifted light beams to measure time during acceleration,” Am. J. Phys. 44, 259 (1976).CrossRefGoogle Scholar
  25. 25.
    W. G. Unruh, “Parallax distance, time, and the twin 'paradox',” Am. J. Phys. 49, 589 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    T. A. Debs and M. L. G. Redhead, “The twin 'paradox' and the conventionality of simultaneity,” Am. J. Phys. 64, 384 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M. L. G. Redhead, “The conventionality of simultaneity,” in Philosophical Problems of Internal and External Worlds: Essays on the Philosophy of Adolf Grünbaum, J. Earman, A. I. Janis, G. I. Massey, and N. Rescher, eds. (University of Pittsburgh, Pittsburgh, 1993), p. 103.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • M. Pauri
    • 1
    • 2
  • M. Vallisneri
    • 3
    • 1
    • 4
  1. 1.Dipartimento di FisicaUniversità di ParmaParmaItaly
  2. 2.INFN, Sezione di Milano, Gruppo Collegato di ParmaItaly
  3. 3.Theoretical Astrophysics 130-33Caltech PasadenaUSA
  4. 4.INFN, Sezione di Milano, Gruppo Collegato di ParmaItaly

Personalised recommendations