Journal of Oceanography

, Volume 55, Issue 6, pp 747–761 | Cite as

Comparative Late Pleistocene Paleoceanographic Changes in the Mid Latitude Boreal and Austral Western Pacific

  • Hodaka Kawahata
  • Ken-ichi Ohkushi
  • Yasufusa Hatakeyama


Middle latitudes of the northern and southern hemispheres of the western Pacific are the sensitive areas for the climatic change. We reconstruct the variation in primary productivity to evaluate the shift of the transition zone between the central water mass and cold water in the both hemispheres. In cores S2612 and LH3166, which are located around boreal and austral 35 degree, the mean COrganic/N atomic ratios are 7.8 and 7.2, respectively. Therefore it is suggested that organic matter is mainly of marine origin (excluding the middle Stage 6 to Stage 7 with the high COrganic/N atomic ratios in core LH3166). Primary productivities estimated from these cores in the middle latitudes of the western Pacific during the late Pleistocene demonstrate similar profiles. Maxima are observed at late Stage 2, late Stage 4 (middle Stage 4 for L3187) and late Stage 6 while minimum values were observed at Stage 5. Mass accumulation rates of organic carbon and biogenic opal also show similar profiles in these cores. These results and paleontological evidence show that the transition zone between Subtropical and subarctic waters almost synchronously migrated along the latitudinal transection during the last 150 kyr.

Organic carbon Shatsky Rise Lord Howe Rise northern and southern hemispheres middle latitude Late Pleistocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. M., W. L. Prell and N. J. Barratt (1989): Estimates of sea surface temperature in the Coral Sea at the last glacial maximum. Paleoceanography, 4, 615–627.Google Scholar
  2. Barkley, R. A. (1970): The Kuroshio Current. Sci. J., 6, 54–60.Google Scholar
  3. Behl, R. J. and J. P. Kennett (1996): Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature, 379, 243–246.Google Scholar
  4. Betzer, R. R., W. J. Showers, E. A. Laws, C. D. Winn, G. R. DiTullio and P. M. Kroopnick (1984): Primary productivity and particle fluxes on a transact of the equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31, 1–11.Google Scholar
  5. Buttler, E. C. V., J. A. Butt, E. J. Lindstrom, P. C. Tildesley, S. Pickmere and W. F. Vincent (1992): Oceanography of the Subtropical convergence zone around southern New Zealand. N.Z. J. Mar. Freshwater Res., 26, 131–154.Google Scholar
  6. Chen, C. T. A., R. A. Feely and J. F. Gendron (1988): Lysocline, calcium carbonate compensation depth, and calcareous sediments in the North Pacific Ocean. Pac. Sci., 42, 237–252.Google Scholar
  7. CLIMAP Project Members (1976): The surface of the ice-age earth. Science, 191, 1131–1137.Google Scholar
  8. CLIMAP Project Members (1981): Seasonal reconstructions of the Earth's surface at the Last Glacial Maximum. Geol. Soc. Am. Map Chart ser., MC36.Google Scholar
  9. Cresswell, G. (1987): The East Australian current. CSIRO Mar. Lab. Inf. Sheet, 3.Google Scholar
  10. Haug, G. H., M. A. Maslin, M. Sarnthein, R. Stax and R. Tiedemann (1995): Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882). p. 293–301. In Proc. ODP, Sci. Results, 145, ed. by D. K. Rea, I. A. Basov, D. W. Scholl and J. F. Allan, College Station, TX (Ocean Drilling Program).Google Scholar
  11. Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol and U. M. Santos (1986): Compositions and fluxes of particulate material in the Amazon River. Limonol. Oceanogr., 31, 717–738.Google Scholar
  12. Hesse, P. P. (1994): The record of continental dust from Australia in Tasman sea sediments. Quat. Sci. Rev., 13, 257–272.Google Scholar
  13. Imbrie, J., N. J. Shackleton, N. G. Pisias, J. J. Morley, W. L. Prell, D. G. Martinson, J. D. Hays, A. McIntyre and A. C. Mix (1984): The orbital theory of Pleistocene climate: support from a revised chronology of the marine O-18 record. p. 269–305. In Milankovitch and Climate, Part 1, ed. by A. Berger et al., Reidel, Hingham.Google Scholar
  14. Ioka, N., Y. Hatakeyama, K. Ikehara, Y. Tanaka, K. Nakashima and A. Suzuki (1997): Marine sediments taken during the NH95–1 cruise. p. 63–80. In Preliminary Report of NH95–1, ed. by A. Nishimura, Geological Survey of Japan, Tsukuba.Google Scholar
  15. Jahnke, R. A. (1990): Early diagenesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California. J. Mar. Res., 48, 413–436.Google Scholar
  16. Kawahata, H. and N. Eguchi (1996): Biogenic sediments in the Eauripic Rise of the equatorial western Pacific during the last 265 kyr. Geochem. J., 30, 201–215.Google Scholar
  17. Kawahata, H. and N. Eguchi (1997): Palaeoproductivity in the North Fiji Basin during the late Pleistocene. J. Oceanogr., 53, 355–364.Google Scholar
  18. Kawahata, H., N. Ahagon and N. Eguchi (1997a): Carbonate preservation variation in the Caroline Basin during the last 330 kyr. Geochem. J., 31, 85–103.Google Scholar
  19. Kawahata, H., T. Okamoto, H. Ujiie, Y. Ito and E. Matsumoto (1997b): The fluctuation of the accumulation rate of aerosol in the Hess rise, north Pacific, during the last 200 kyr: Estimation of aerosol effect to carbon cycle. J. Geol. Soc. Japan, 103, 475–483.Google Scholar
  20. Kawahata, H., A. Suzuki and N. Ahagon (1998a): Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330 kyr. Mar. Geology, 149, 155–176.Google Scholar
  21. Kawahata, H., A. Suzuki and H. Ohta (1998b): Sinking particles between the equatorial and subarctic regions (0°N–46°N) in the Central Pacific. Geochem. J., 32, 125–133.Google Scholar
  22. Kennett, J. P. and B. L. Ingram (1995): A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature, 377, 510–513.Google Scholar
  23. Koblentz-Mishke, O. J., V. V. Volkovinsky and J. G. Kabanova (1970): Plankton primary production of the world ocean. p. 183–193. In Scientific Exploration of the South Pacific, ed. by W. S. Wooster, National Academy of Sciences, Washington, D.C.Google Scholar
  24. Martinez, J. I. (1994): Late Pleistocene palaeoceanography of the Tasman Sea: Implications for the dynamics of the warm pool in the westerm Pacific. Paleo. Paleo. Paleo., 11, 19–62.Google Scholar
  25. Moore, T. C., L. H. Burckle, K. Geitzenauer, B. Luz, A. Molina-Cruz, J. H. Robertson, H. Sachs, C. Sancetta, J. Thiede, P. Thompson and C. Wenkam (1980): The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P. Mar. Micropaleontol., 5, 1,119–1,126.Google Scholar
  26. Mueller, P. J. (1977): C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41, 765–776.Google Scholar
  27. Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of sea water. p. 26–77. In The Sea, ed. by M. N. Hill, John Wiley, New York.Google Scholar
  28. Sancetta, C. and S. M. Silvestir (1986): Pliocene-Pleistocene evolution of the north Pacific ocean-atmosphere system, interpreted from fossil diatoms. Paleoceanography, 1, 163–180.Google Scholar
  29. Sarnthein, M., K. Winn, J.-C. Duplessy and M. Fontugne (1988): Global variations in surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, 3, 361–399.Google Scholar
  30. Stanton, B. R. (1981): An oceanographic survey of the Tasman Front. N.Z. J. Mar. Freshwater Res., 15, 289–297.Google Scholar
  31. Stein, R. (1986): Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deep-water environments of the Mesozoic Atlantic Ocean. p. 55–70. In Biochemistry of Black Shales., ed. by E. T. Degens, P. A. Meyers and S. C. Brassel, Mitt. Geol. Palaont. Inst. Univ. Hamburg, Germany.Google Scholar
  32. Suess, E. and P. J. Mueller (1980): Productivity, sedimentation rate and sedimentary organic matter in the oceans. II. p. 17–26. In Elemental Fractionation, Colloques Internationaux due C.N.R.S., No. 293, Editions du Centre National de la Recherche Scientifique, Paris.Google Scholar
  33. Tanaka, Y., K. Ikehara and A. Suzuki (1995): Marine sediments taken from the transact of 175°E and from the Hess Rise. p. 68–79. In Preliminary Report of NH93–1, ed. by A. Nishimura, Geological Survey of Japan, Tsukuba.Google Scholar
  34. Thompson, P. R. (1981): Planktonic foraminifera in the western North Pacific during the past 150,000 years: comparison of modern and fossil assemblages. Paleo. Paleo. Paleo., 35, 241–279.Google Scholar
  35. Thompson, P. R. and N. J. Shackleton (1980): North Pacific paleoceanography: late Quaternary coiling variations of planktonic foraminifer Neogloboquadrina pachyderma. Nature, 287, 829–833.Google Scholar
  36. Thunell, R. C. and P. G. Mortyn (1995): Glacial climate instability in the Northeast Pacific Ocean. Nature, 376, 504–506.Google Scholar
  37. Villanoy, C. L. and M. Tomezak (1991): Influence of the Bass Strait Water on the Tasman Sea thermocline. Aust. J. Mar. Freshwater Res., 42, 451–464.Google Scholar

Copyright information

© The Oceanographic Society of Japan 1999

Authors and Affiliations

  • Hodaka Kawahata
    • 1
    • 2
  • Ken-ichi Ohkushi
    • 3
  • Yasufusa Hatakeyama
    • 4
  1. 1.Marine Geology DepartmentGeological Survey of JapanIbarakiJapan
  2. 2.Graduate School of ScienceTohoku UniversitySendaiJapan
  3. 3.University of TsukubaIbarakiJapan
  4. 4.Kansai Environmental Engineering Center CO. LTD.OsakaJapan

Personalised recommendations