Advertisement

Journal of Oceanography

, Volume 55, Issue 4, pp 471–482 | Cite as

Large-Scale and Mesoscale Distribution of Plankton Biomass and Metabolic Activity in the Northeastern Central Atlantic

  • Santiago Hernández-León
  • Lutz Postel
  • Javier Arístegui
  • May Gómez
  • María Fernanda Montero
  • Santiago Torres
  • Carlos Almeida
  • Eugen Kühner
  • Ullrich Brenning
  • Eberhard Hagen
Article

Abstract

Plankton biomass and indices of metabolism and growth [electron transport system (ETS), glutamate dehydrogenase (GDH) and aspartate transcarbamylase (ATC) activities] were studied over a 2,800 km east-west section of the tropical North Atlantic Ocean (21°N) in <200, 200–500 and >;500 µm size classes. On the large-scale, zooplankton (>;200 µm) enzymatic activities increased westward in the study section, where large cyanobacteria chains (Trichodesmium spp.) were observed. Parallel to it, an increase in medium calanoids (1–2 mm length) was observed towards the western part of the transect, whereas small calanoids (<1 mm) were dominant throughout the boundary area of the subtropical gyre. Microplankton ETS and mesoplankton ETS and ATC activities seemed to match the wave length of low frequency waves. Our results suggest that such waves are related to the observed enhancement of metabolic activity of micro- and mesoplankton. The large-scale and mesoscale variability observed give evidence of the inadequacy of assuming a steady-state picture of the euphotic zone of tropical and subtropical waters.

Plankton biomass metabolism northeast Central Atlantic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alayse-Danet, A. M. (1980): Aspatate transcarbamylase in Artemia during early stages of development. In The Brine Shrimp Artemia, ed. by G. Persoone, P. Soorgeloos, O. Roels and E. Jaspers, Universal Press, Wetteren, Belgium, Vol. 2, 259–275.Google Scholar
  2. Arístegui, J. and M. F. Montero (1995): The relationship between community respiration and ETS activity in the ocean. J. Plankton Res., 17, 1563–1571.Google Scholar
  3. Bergeron, J. P. (1982): L'aspartate transcarbamylase, indice de croissance des organismes marins: perspectives et limites. In Actualités de Biochimie marine: indices biochimiques et milieux marins, Publ. CNEXO, Actes Colloq., 14, 177–192.Google Scholar
  4. Bergeron, J. P. and A. M. Alayse-Danet (1981): Aspartate transcarbamylase de la coquille Saint-Jaques Pecten maximus L. (Mollusque Lamellibranche): Methode de dosage et variations de L'activite dans le monteau et la gonade. J. Exp. Mar. Biol. Ecol., 50, 99–117.Google Scholar
  5. Bergeron, J. P. and D. Buestel (1979): L'Aspartate transcarbamylase, indice de l'activité sexuelle de la coquille Saint-Jaques (Pecten maximus L.). Premier resultats. p. 301–308. In Cyclic Phenomena in Marine Plants and Animals, ed. by E. Naylor and R. G. Hartnoll, Pergamon Press, N.Y.Google Scholar
  6. Bidigare, R. R. and F. D. King (1981): The measurement of glutamate dehydrogenase activity in Praunus flexousus and its role in the regulation of ammonium excretion. Comp. Biochem. Physiol., 70B, 409–413.Google Scholar
  7. Bidigare, R. R., F. D. King and D. C. Biggs (1982): Glutamate dehidrogenase (GDH) and respiratory electron transport system (ETS) activities in Gulf of Mexico zooplankton. J. Plankton Res., 4, 895–911.Google Scholar
  8. Bryan, J. R., J. P. Riley and P. J. L. Williams (1976): A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol., 21, 191–197.Google Scholar
  9. Carpenter, E. J. (1983): Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium). Mar. Biol. Lett., 4, 69–85.Google Scholar
  10. Carpenter, E. J., J. M. O'Neil, R. Dawson, D. G. Capone, P. J. A. Siddiqui, T. Roenneberg and B. Bergman (1993): The tropical diazotrophic phytoplankter Trichodesmium: biological characteristics of two common species. Mar. Ecol. Progr. Ser., 95, 295–304.Google Scholar
  11. Carrit, D. E. and J. H. Carperter (1966): Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater. A NASCO Report. J. Mar. Res., 24, 286–318.Google Scholar
  12. Checkley, D. M., M. J. Dagg and S. Uye (1992): Feeding, excretion and egg production by individuals and populations of the marine, planktonic copepods, Acartia spp. and Centropages furcatus. J. Plankton Res., 14, 71–96.Google Scholar
  13. Christensen, J. P. and T. T. Packard (1979): Respiratory electron transport activities in phytoplankton and bacteria: Comparison of methods. Limnol. Oceanogr., 24, 576–583.Google Scholar
  14. Duarte, C. M. and S. Agustí (1998): The CO2 balance of unproductive aquatic ecosystems. Science, 281, 234–236.Google Scholar
  15. Emery, W. J., W. G. Lee and L. Magaard (1984): Geographic and seasonal distributions of Brunt-Väisälä Frequency and Rossby Radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294–317.Google Scholar
  16. Gieskes, W. W. and G. W. Kraay (1986): Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments. Mar. Biol., 91, 567–576.Google Scholar
  17. Grasshoff, P., M. Ehrhardt and K. Kremling (1983): Methods of seawater analysis. Verlag Chemie, FRG, 419, 61–72.Google Scholar
  18. Hagen, E. (1992): On the zonal structures of the 15°C–18°C layer thickness in the central eastern North Atlantic. Beitr. Meereeskunde, 63, 131–135.Google Scholar
  19. Hermann, P. and W. Krauss (1989): Generation and propagation of annual Rossby waves in the North Atlantic. J. Phys. Oceanogr., 19, 727–744.Google Scholar
  20. Hernández-León, S. (1988): Gradients of mesozooplankton biomass and ETS activity in the wind-shear area as evidence of an island mass effect in the Canary Island waters. J. Plankton Res., 10, 1141–1154.Google Scholar
  21. Hernández-León, S. (1991): Accumulation of mesozooplankton in a wake area as a causative mechanism of the “Island-Mass effect”. Mar. Biol., 109, 141–147.Google Scholar
  22. Hernández-León, S. (1998): Annual cycle of epiplanktonic copepods in Canary Island waters. Fish. Oceanogr., 7, 252–257.Google Scholar
  23. Hernández-León, S. and M. Gómez (1996): Factors affecting the Respiration/ETS ratio in marine zooplankton. J. Plankton Res., 18, 239–255.Google Scholar
  24. Hernández-León, S. and S. Torres (1997): The relationship between ammonia excretion and GDH activity in marine zooplankton. J. Plankton Res., 19, 587–601.Google Scholar
  25. Hernández-León, S., C. Almeida and I. Montero (1995): The use of aspartate transcarbamylase activity to estimate growth rates in zooplankton. ICES J. Mar. Sci., 52, 377–383.Google Scholar
  26. Kaiser, W. and L. Postel (1979): Importance of the vertical nutrient flux for biological production in the equatorial undercurrent region at 30°W. Mar. Biol., 55, 23–27.Google Scholar
  27. Kana, T. M. (1992): Oxygen cycling in cyanobacteria with special reference to oxygen protection in Trichodesmium spp. p. 29–41. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, ed. by E. J. Carpenter, D. G. Capone and J. G. Rueter, Kluwer Academic Publishers.Google Scholar
  28. Kenner, R. A. and S. I. Ahmed (1975): Measurements of electron transport activities in marine phytoplankton. Mar. Biol., 33, 119–127.Google Scholar
  29. King, F. D. (1984): The vertical distribution of zooplankton glutamate dehydrogenase in relation to chlorophyll in the vicinity of the Nantucket Shoals. Mar. Biol., 79, 249–256.Google Scholar
  30. King, F. D. and T. T. Packard (1975): Respiration and the respiratory electron transport system in marine zooplankton. Limnol. Oceanogr., 20, 849–854.Google Scholar
  31. King, F. D., T. L. Cucci and D. W. Townsend (1987): Microzooplankton and macrozooplankton glutamate dehydrogenase as indices of the relative contribution of these fractions to ammonium regeneration in the Gulf of Maine. J. Plankton Res., 9, 277–289.Google Scholar
  32. Lampitt, R. S., W. R. Hillier and P. G. Challenor (1993): Seasonal and diel variation in the open ocean concentration of marine snow aggregates. Nature, 362, 737–739.Google Scholar
  33. Le Bouteiller, A. and A. Herbland (1982): Diel variation of chlorophyll a as evidenced from a 13-day station in the equatorial Atlantic Ocean. Oceanol. Acta, 5, 433–441.Google Scholar
  34. Lenz, J., A. Morales and J. Gunkel (1993): Mesozooplankton standing stock during the North Atlantic spring bloom study 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Res. II, 40, 559–572.Google Scholar
  35. Longhurst, A. R. and W. G. Harrison (1989): The biological pump: Profiles of plankton production and consumption in the upper ocean. Progr. Oceanogr., 22, 47–123.Google Scholar
  36. Longhurst, A. R., A. W. Bedo, W. G. Harrison, E. J. H. Head and D. D. Sameoto (1990): Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res., 37, 685–694.Google Scholar
  37. Lowry, P. H., N. J. Rosenbrough, A. L. Farr and R. J. Randall (1951): Protein measurement with a Folin Phenol reagent. J. Biol. Chem., 193, 265–275.Google Scholar
  38. Owens, T. G. and F. D. King (1975): The measurement of respiratory electron transport system activity in marine zooplankton. Mar. Biol., 30, 27–36.Google Scholar
  39. Packard, T. T. (1969): The estimation of the oxygen utilization rate in seawater from the activity of the respiratory electron transport system in plankton. Ph.D. Thesis, Univ. Washington, Seattle, 115 pp.Google Scholar
  40. Packard, T. T. (1971): The measurement of respiratory electron transport activity in marine phytoplankton. J. Mar. Res., 29, 235–244.Google Scholar
  41. Packard, T. T. and P. J. L. Williams (1981): Rates of respiratory oxygen consumption and electron transport in surface waters from the Northwest Atlantic. Oceanol. Acta, 4, 351–358.Google Scholar
  42. Packard, T. T., A. H. Devol and F. D. King (1975): The effect of temperature on the respiratory electron transport system in marine plankton. Deep-Sea Res., 22, 237–249.Google Scholar
  43. Packard, T. T., E. Berdalet, D. Blasco, S. O. Roy, L. St-Amand, B. Lagcé, K. Lee and J.-P. Gagné (1996): Oxygen consumption in the marine bacterium Pseudomonas nautica predicted from ETS activity and bisubstrate enzyme kinetics. J. Plankton Res., 18, 1819–1835.Google Scholar
  44. Platt, T., P. Jauhari and S. Sathyendranath (1992): The importance and measurement of new production. p. 273–284. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. by P. G. Falkowski and A. W. Woodhead, Plenum Press, New York.Google Scholar
  45. Roman, M. R., C. S. Yentsch, A. L. Gauzens and D. A. Phinney (1986): Grazer control of the fine-scale distribution of phytoplankton in warm-core gulf stream rings. J. Mar. Res., 44, 795–813.Google Scholar
  46. Siedler, G. and M. Finke (1993): Long-period transport changes in the Eastern North Atlantic and their simulation by propagating waves. J. Geophys. Res., 98, 2393–2406.Google Scholar
  47. Strickland, J. D. H. and T. R. Parsons (1972): A practical handbook of seawater analysis. Fish. Res. Bd. Canada, Bull., 167 pp.Google Scholar
  48. UNESCO (1968): Zooplankton sampling. Monogr. Oceanographic Methods, 2, 174 pp.Google Scholar
  49. Van Woert, M. L. and J. M. Price (1993): Geosat and advanced very high resolucion radiometer observations of Oceanic planetary waves adjacent to the Hawaiian Islands. J. Geophys. Res., 98, 14619–14631.Google Scholar
  50. Venrick, E. L. (1990): Mesoscale patterns of chlorophyll a in the central north Pacific. Deep-Sea Res., 37, 1017–1031.Google Scholar
  51. Voituriez, B. and A. Herbland (1977): Étude de la production pelagique de la zone équatoriale de l'Atlantique a 4°W. I. Relation entre la structure hydrologique et la production primaire. Cah. O.R.S.T.O.M. sér. Oceanogr., 15, 313–331.Google Scholar
  52. White, W. and J. F. T. Saur (1981): A source of annual baroclinic waves in the eastern subtropical North Pacific. J. Phys. Oceanogr., 11, 1452–1462.Google Scholar
  53. White, W. and J. F. T. Saur (1983): Sources of interannual baroclinic waves in the eastern subtropical North Pacific. J. Phys. Oceanogr., 13, 531–544.Google Scholar
  54. Williams, P. J. LeB. (1984): A review of measurements of respiration of marine plankton populations. p. 357–389. In Heterotrophic Activity in the Sea, ed. by J. E. Hobbie and P. J. LeB. Williams, Plenum Press, New York.Google Scholar
  55. Williams, P. J. LeB. and N. W. Jenkinson (1982): A transportable microprocessor-controlled precise winkler titration suitable for field station and shipboard use. Limnol. Oceanogr., 27, 576–584.Google Scholar

Copyright information

© The Oceanographic Society of Japan 1999

Authors and Affiliations

  • Santiago Hernández-León
    • 1
  • Lutz Postel
    • 2
  • Javier Arístegui
    • 1
  • May Gómez
    • 1
  • María Fernanda Montero
    • 1
  • Santiago Torres
    • 1
  • Carlos Almeida
    • 1
  • Eugen Kühner
    • 3
  • Ullrich Brenning
    • 3
  • Eberhard Hagen
    • 2
  1. 1.Facultad de Ciencias del MarCampus Universitario de TafiraIslas CanariasSpain
  2. 2.Institut für OstseeforschungRostockGermany
  3. 3.Fachbereich BiologieUniversität RostockRostockGermany

Personalised recommendations