Advertisement

Journal of Superconductivity

, Volume 14, Issue 1, pp 133–142 | Cite as

Superconductivity in Mesoscopic Metal Particles

  • H. Boyaci
  • Z. Gedik
  • I. O. Kulik
Article

Abstract

Recently, it has been possible to construct single-electron transistors to study electronic properties, including superconductivity, in metallic grains of nanometer size. Among several theoretical results are suppression of superconductivity with decreasing grain size and parity effect, that is, dependence on the parity of the number of electrons on the grain. We study how these results are affected by degeneracy of energy levels. In addition to the time-reversal symmetry, for certain energy spectra and more generally for lattice symmetries, energy levels are strongly degenerate near the Fermi energy. For a parabolic dispersion, degeneracy d is of the order of kFL, whereas the typical distance between the levels is of the order of ∈F/(kFL)2 where kF and ∈F are the Fermi wave vector and energy, respectively, and L is the particle size. First, using an exact solution method for BCS Hamiltonian with finite number of energy levels, we find a new feature for the well studied nondegenerate case. In that case, parity effect exhibits a minimum instead of a monotonic behavior. For d-fold degenerate states we find that the ratio of two successive parity-effect parameters Δp is nearly 1 + 1/d. Our numerical solutions for the exact ground state energy of negative-U Hubbard model on a cubic cluster also give very similar results. Hence we conclude that parity effect is a general property of small Fermi systems with attractive interaction, and it is closely related to degeneracy of energy levels.

Mesoscopic systems superconductivity strongly correlated electrons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Tinkham, J. M. Hergenrother, and J. G. Lu, Phys. Rev. B 51, 12649 (1995).Google Scholar
  2. 2.
    C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996).Google Scholar
  3. 3.
    D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995).Google Scholar
  4. 4.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, B. Al'tshuler, P. Lee, and R. Webb, eds. (Elsevier, Amsterdam, 1991), p. 173.Google Scholar
  5. 5.
    K. A. Matveev and A. I. Larkin, Phys. Rev. Lett. 78, 3749 (1997).Google Scholar
  6. 6.
    J. von Delft, A. D. Zaikin, D. S. Golubev, and W. Tichy, Phys. Rev. Lett. 77, 3189 (1996).Google Scholar
  7. 7.
    R. A. Smith and V. Ambegaokar, Phys. Rev. Lett. 77, 4962 (1996).Google Scholar
  8. 8.
    A. Mastellone, G. Falci and R. Fazio, Phys. Rev. Lett. 80, 4542 (1998).Google Scholar
  9. 9.
    S. D. Berger and B. I. Halperin, Phys. Rev. B 58, 5213 (1998).Google Scholar
  10. 10.
    U. Landman, talk presented at NATO-ASI Meeting, Ankara/Antalya, 1999, NATO ASI Series, Kluwer, to be published.Google Scholar
  11. 11.
    A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinsky, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, New York, 1963).Google Scholar
  12. 12.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  13. 13.
    F. Braun and J. von Delft, Phys. Rev. B 59, 9527 (1999).Google Scholar
  14. 14.
    P. W. Anderson, J. Phys. Chem. Solids 11, 28 (1959).Google Scholar
  15. 15.
    R. W. Richardson and N. Sherman, Nuclear Physics 52, 221 (1964).Google Scholar
  16. 16.
    F. Braun and J. von Delft, Advances in Solid State Physics 39, 341 (1999). Also in cond-matt/9907402.Google Scholar
  17. 17.
    W. H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, 2nd Ed. (Cambridge University Press, Cambridge, 1996).Google Scholar
  18. 18.
    R. W. Richardson, Phys. Rev. 141, 949 (1966).Google Scholar
  19. 19.
    J. von Delft and F. Braun, talk presented at NATO-ASI Meeting, Ankara/Antalya, 1999, NATO ASI Series, Kluwer, to be published. Also in cond-matt/9907402.Google Scholar
  20. 20.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).Google Scholar
  21. 21.
    H. Boyaci and I.O. Kulik, Fiz. Nizk. Temp. 25, 838 (1999) [Low Temp. Phys. 25, 625 (1999)].Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • H. Boyaci
    • 1
  • Z. Gedik
    • 1
  • I. O. Kulik
    • 1
    • 2
  1. 1.Department of PhysicsBilkent University, BilkentAnkaraTurkey
  2. 2.Psychology DepartmentNew York UniversityNew York

Personalised recommendations