Fish Physiology and Biochemistry

, Volume 20, Issue 4, pp 325–330 | Cite as

Effects of chronic exposure to γ-HCH (Lindane) on brain serotonergic and gabaergic systems, and serum cortisol and thyroxine levels of rainbow trout, Oncorhynchus mykiss

  • M. Aldegunde
  • J.L. Soengas
  • C. Ruibal
  • M.D. Andrés


Rainbow trout (Oncorhynchus mykiss) were implanted intraperitoneally with 0.5 ml.100 g−1 body weight of coconut oil alone (controls) or coconut oil contaning 0.05 mg of γ-HCH (Lindane). After 18 days, changes in brain serotonin and GABA metabolism, as well as in serum cortisol and thyroxine levels, were measured. A lower final body weight was observed in γ-HCH treated fish when compared with control fish. No significant differences were found for serum thyroxine levels between control and treated fish, but a significantly higher cortisol level was found in the γ-HCH-implanted trout. Although GABA levels did not differ significantly in any brain region in the two treatment groups, the activity of the serotonergic system was significantly altered by the pesticide in both the hypothalamus and the telencephalon.

GABA serotonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldegunde, M., Parafita, M. and Fernández, M.P. 1983. Effect of γ-hexachlorocyclohexane on serotonin metabolism in rat brain. Gen. Pharmacol. 14: 303–305.Google Scholar
  2. Aldegunde, M., Miguez, I., Parafita, M. and Duran R. 1986. Effect of Lindane on brain monoamine metabolism. Gen. Pharmacol. 17: 633–635.Google Scholar
  3. Aldegunde, M., García, J., Soengas, J.L. and Rozas, G. 1998. Uptake of tryptophan into brain of rainbow trout. J. Exp. Zool. 282: 285–289.Google Scholar
  4. Barton, B.A. and Iwama, G.K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish. Dis. 1: 3–26.Google Scholar
  5. Bastomsky, C.H. 1977. Goiters in rats fed polychlorinated biphenyls. Can. J. Physiol. Pharmacol. 55: 288–292.Google Scholar
  6. Bloxam D. and Warren, W. 1974. Error in the determination of tryptophan by the method of Denckla and Dewey. A revised procedure. Anal. Biochem. 60: 621–625.Google Scholar
  7. Canevari, L., Vieira, R., Aldegunde, M. and Dagani, F. 1992. High-performance liquid chromatographic separation with electrochemical detection of aminoacids focusing on neurochemical application. Anal. Biochem. 205: 137–142.Google Scholar
  8. Cossarini-Dunier, M., Monod, G., Demael, A. and Lepot, D. 1987. Effect of γ-hexachlorociclohexane (Lindane) on carp (Cyprinus carpio). I:. Effect of chronic intoxication on humoral immunity in relation to tissue pollutant levels. Ecotox. Environ. Safety. 13: 339–345.Google Scholar
  9. Ensenbach, U. and Nagel R. 1997. Toxicity of binary Chemical mixtures: effects on reproduction of Zebrafish (Brachydanio rerio) Arch. Environ. Contam. Toxicol. 32: 204–210.Google Scholar
  10. Fuentes, J., Rozas, G., Alfonso, M., Rebolledo, E. and Aldegunde, M. 1990. Cambios estacionales de la actividad Na+/K+ ATPásica branquial y de los niveles séricos de tiroxina en la trucha arco iris(Oncorhynchus mykiss). Actas III Congreso Nac. Acuicult. 237–242.Google Scholar
  11. Gopal, K., Ram M.D., and Agarwal D. 1993. Some physiological consequences to fresh water fish, Channa punctatus, after exposure to Lindane. Bull. Environ. Contam. Toxicol. 50: 187–191.Google Scholar
  12. Görge, G. and Nagel, R. 1990. Toxicity of lindane, atrazine, and deltamethrin to early life stages of zebrafish (Brachydanio rerio). Ecotox. Environ. Safety. 20: 246–255.Google Scholar
  13. Heath, A.G. 1987. Water Pollution and Fish Physiology. CRC Press, Boca Raton.Google Scholar
  14. Hernandez-Rauda, R., Otero, J., Rey, P., Rozas, G. and Aldegunde M. 1996. Dopamine and serotonin in the trout (Oncorhynchus mykiss) pituitary: main metabolites and changes during gonadal recrudescence. Gen. Comp. Endocrinol. 103: 13–23.Google Scholar
  15. Holdway, D.A., Sloley, B.D., Downer, R.G.H. and Dixon, D.G. 1986. Effect of pulse exposure to methoxichlor on brain serotonin levels in american flagfish (Jordanella floridae, Goode and Bean) as modified by time after exposure, concentraticon and gender. Env. Toxicol. Chem. 5: 289–294.Google Scholar
  16. Joy, R.M. 1982. Mode of action of lindane, dieldrin and related insecticides in the central nervous system. Neurobehav. Toxicol. Teratol. 4: 813–823.Google Scholar
  17. Kaaber, A.S.I., Prasada Rao, K.S., Sambasiva Rao, K.R.S. and Ramana Rao, R.V. 1984. Sublethal toxicity of malathion on the proteases and free amino acid composition in the liver of the teleost, Tilapia mossambica. Toxicol. Lett. 20: 59–65.Google Scholar
  18. Khan, I.A. and Thomas, P. 1997. Arochlor 1254-induced alterations in hypothalamic monoamines metabolism in the atlantic croaker (Micropogonias undulatus): correlation with pituitary gonadotrophin release. Neurotoxicology. 18: 553–560.Google Scholar
  19. Khan, I.A. and Thomas, P. 1992. Stimulatory effects of serotonin on maturational gonadotropin release in the atlantic croaker, Micropogonias undulatus. Gen. Comp. Endocrinol. 88: 388–396.Google Scholar
  20. Kime, D.E. and Singh, P.B. 1996. In vitro effects of γ-Hexachlorocyclohexane on in vitro biosynthesis and metabolism of steroids in goldfish, Carassius auratus. Ecotox. Environ. Safety. 34: 165–173.Google Scholar
  21. Leatherland J.F. and Sonstegard R.A. 1978. Lowering of serum thyroxine and triiodothyronine levels in yearling coho salmon, Oncorhynchus kisutch, by dietary Mirex and PCBs. J. Fish. Res. Bd. Can. 35: 1285–1289.Google Scholar
  22. Leatherland J.F. and Sonstegard, R.A. 1980. Effect of dietary Mirex and PCB'S in combination with food deprivation and testosterone administration on thyroid activity and bioaccumulation of organochlorines in rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 3: 115–124.Google Scholar
  23. Leatherland J.F. and Sonstegard R.A. 1982. Bioaccumulation of organochlorines by yearling coho salmon (Oncorhynchus kisutch, Walbaum) fed diets containing Great Lakes' coho salmon, and the pathophysiologycal responses of the recipients. Comp. Biochem. Physiol. 72C: 91–99.Google Scholar
  24. Lunt, G.G. 1991. GABA and GABA receptors in invertebrates. Seminars in Neurosci. 3: 251–258.Google Scholar
  25. Martin, F. and Aldegunde, M. 1989. Simple high-performance liquid chromatographic method with electrochemical detection for the determination of indolamines in tissue and plasma. J. Chromatogr. 491: 221–225.Google Scholar
  26. Murty, A.S. 1986. Toxicity of Pesticides to Fish. Vol. 2. CRC Press, Boca Raton.Google Scholar
  27. Peter, R.E. and McKeown, B.A. 1975. Hypothalamic control of prolactin and thyrotropin secretion in teleosts, with special reference to recent studies on the goldfish, Carassius auratus. Gen. Comp. Endocrinol. 25: 153–165.Google Scholar
  28. Pickering, A.D. Pottinger, T.G. and Carragher, J. F. 1989. Differences in the sensitivity of brown trout, Salmo trutta L., and rainbow trout, Salmo gairdneri Richardson, to physiological doses of cortisol. J. Fish Biol. 34: 757–768.Google Scholar
  29. Pickering, A.D. Pottinger, T.G. Sumpter, J.P., Carragher, J. F. and Le Bail, P.Y. 1991. Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 83: 86–93.Google Scholar
  30. Ramana-Rao, K.V., Surendranath, P., and Madhu, C.H. 1994. Lindane toxicity on lipid metabolim of a teleost fish, Tilapia mossambica (Peters). J. Anim. Morphol. Physiol. 41: 87–92.Google Scholar
  31. Rey, P., Rozas, G. Alfonso, M., Rebolledo, E. and Aldegunde, M. 1990. Utilización de un kit comercial de radioinmunoensayo para medir los niveles séricos de cortisol en la trucha arco iris (Oncorhynchus mykiss). Niveles durante el período de esmoltificación. Actas III Congreso Nac. Acuicult. 249–253.Google Scholar
  32. Rozados, M.V., Andrés, M.D. and Aldegunde, M.A. 1991. Preliminary studies on the acute effect of lindane (γ-HCH) on brain serotonergic system in rainbow trout Oncorhynchus mykiss. Aquat. Toxicol. 19: 33–40.Google Scholar
  33. Rozas, G., Rey, P., Andres, M.D., Rebolledo, E. and Aldegunde, M. 1990. Distribution of 5-hydroxytryptamine and related compounds in various brain regions of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 8: 501–506.Google Scholar
  34. Saligaut, C., Salbert, G., Bailhache, T., Bennani, S. and Jego, P. 1992. Serotonin and dopamine turnover in the female rainbow trout (Oncorhynchus mykiss) brain and pituitary: changes during the annual reproductive cycle. Gen. Comp. Endocrinol. 88: 261–268.Google Scholar
  35. Shannon, N.J., Gunnet, J.W. and Moore, K.E. 1986. A comparison of biochemical indices of 5-Hydroxytryptaminergic neuronal activity following electrical stimulation of the dorsal raphe nucleus. J. Neurochem. 47: 958–965.Google Scholar
  36. Singh, P.B., Kime, D.E., Epler, P. and Chyb, J. 1994. Impact of γ-hexachlorocyclohexane exposure on plasma gonadotrophin levels and in vitro stimulation of gonadal steroid production by carp hypophysial homogenate in Carassius auratus. J. Fish Biol. 44: 195–204.Google Scholar
  37. Sloley, B.D., Hickie, B.E. Dixon, D.G., Downer, R.G.H. and Martin, R.G. 1986. The effects of sodium pentachlorophenate, diet and sampling procedure on amine and tryptophan concentrations in the brain of rainbow trout, Salmo gairdneri. J. Fish Biol. 28: 267–277.Google Scholar
  38. Soengas, J.L., Strong, E.F., Aldegunde, M. and Andrés, M.D. 1997. Effects of an acute exposure to lindane (γ-Hexachorocyclohexane) on brain and liver carbohydrate metabolism of rainbow trout. Ecotox. Environ. Safety. 38: 99–107.Google Scholar
  39. Soengas, J.L., Rey, P., Rozas, G., Andres, M.D. and Aldegunde, M. 1992. Effects of cortisol and thyroid hormone treatment on the glycogen metabolism of selected tissues of domesticated rainbow trout, Oncorhynchus mykiss. Aquaculture 101: 317–328.Google Scholar
  40. Somoza, G.M. and Peter, R.E. 1991. Effects of serotonin on gonadotropin and growth hormone release from in vitro peri-fused goldfish pituitary fragments. Gen. Comp. Endocrinol. 82: 103–110.Google Scholar
  41. Sumpter, J.P. 1992. Control of growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 100: 299–320.Google Scholar
  42. Suñol, C., Tusell, J.M., Gelpi, E. and Rodriguez-Farré, E. 1988. Regional concentrations of GABA, serotonin and noradrenaline in brain at onset of seizures induces by Lindane (gamma-hexachlorocyclohexane). Neuropharmacology 27: 677–681.Google Scholar
  43. Tooby, T.E. and Durbin, F.J. 1975. Lindane residue accumulation and elimination in rainbow trout (Salmo gairdnerii Richardson) and roach (Rutilus rutilus Linnaeus). Environ. Pollut. 8: 79–89.Google Scholar
  44. Winberg, S., Nilsson, A., Hylland, P., Soderstom, V. and Nilsson, G.E. 1997. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci. Lett. 230: 113–116.Google Scholar
  45. Zisterer, D.M., Suñol, C., Moynagh, P.M., Williams, D.C. and Rodriguez-Farré, E. 1995. PK-11195 reduces the brain availability of lindane in rats and the convulsions induced by this neurotoxic agent. Life Sci. 57: 2359–2364.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Aldegunde
    • 1
  • J.L. Soengas
    • 1
  • C. Ruibal
    • 1
  • M.D. Andrés
    • 1
  1. 1.Laboratorio de Fisioloxía Animal (Departamento de Fisioloxía). Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain (Phone

Personalised recommendations